Sıfırıncı kanunu
iki sistem birbirleri ile etkileşim halinde oldukları halde, durumları değişmeden kalıyorsa bu iki sistem birbirleri ile dengededir denilir. Eğer iki sistem etkileşime açık oldukları halde, aralarında mekanik etkileşimle olan enerji transferi (iş) dışında net enerji transferi (ısı geçişi) yoksa, bu iki sistem birbirleri ile ısıl dengededirler. Sıfırıncı yasa şöyle der:
Eğer A ve B sistemleri birbirleri ile ısıl dengede iseler, A sistemi ile ısıl dengede olan bir C sistemi B sistemi ile de ısıl denge durumundadır. Bu denge durumu, sıcaklık olarak tanımlanır. Yani her sıcaklık derecesi, farklı bir denge durumunu temsil eder.
1931 yılında Ralph H. Fowler tarafından tanımlanan bu yasa, temel bir fizik ilkesi olarak karşımıza çıktığından, doğal olarak 1. ve 2. yasalardan önce gelmek zorunluluğu doğmuş ve sıfırıncı yasa adını almıştır.
Birinci kanunu[değiştir | kaynağı değiştir]
Tipik bir termodinamik sistem: ısı sıcak kaynatıcıdan soğuk yoğunlaştırıcıya doğru hareket eder ve bu sayede bir iş ortaya çıkar.
Bir sistemin iç enerjisindeki artış: sisteme verilen ısı ile, sistemin çevresine uyguladığı iş arasındaki farktır.
U2 – U1 = Q – W
Bu yasa "enerjinin korunumu" olarak da bilinir. Enerji yoktan var edilemez ve yok edilemez sadece bir şekilden diğerine dönüşür. Bir sistemin herhangi bir çevrimi için çevrim sırasında ısı alışverişi ile iş alışverişi aynı birim sisteminde birbirlerine eşit farklı birim sistemlerinde ise birbirlerine orantılı olmak zorundadır. Bu ifadelerin yapılan deneylerle doğruluğu gözlenmiştir fakat ispat edilememektedir. Bütün bu ifadeler matematiksel olarak çok daha kolay ifade edilebilir.
Aşağıdaki formüllerde
Q = çevrim boyunca net ısı alışverişini
W = çevrim boyunca net iş alışverişini
göstersin. Ama bir de çevrime ihtiyaç duyuyoruz şimdi onu da basit olarak çizelim,
Örnek hal değişimi.JPG
Şimdi bu şekilde sistemin herhangi iki hali görünüyor yani 1 ve 2 nolu noktalar. Hal değişimleri ise A , B , C çizgileriyle sağlansın. Ok yönleri de hal değişimlerinin olacağı yönler. Şimdi hal değişimleri 1A2 ve 1B2 ise 2C1 ilk hale dönülen durumdur. Şimdi çevrimleri kurguluyalım elimizde 1A2C1 ve 1B2C1 çevrimleri var:
1A∫2.δ.Q + 2C∫1.δ.Q = 1A∫2.δ.W + 2C∫1.δ.W ( 1A2C1 Çevrimi ) (a denklemi)
1B∫2.δ.Q + 2C∫1.δ.Q = 1B∫2.δ.W + 2C∫1.δ.W ( 1B2C1 Çevrimi ) (b denklemi)
1A2C1 ve 1B2C1 çevrimleri birbirlerine eşittir. Termodinamiğin 1. kanunu uygulandığında a ve b denklemleri ortaya çıkar b denklemi a denkleminden çıkarırsak c denklemini buluruz.
1A∫2 ( δ.Q - δ.W ) = 1B∫2( δ.Q - δ.W ) (c denklemi)
1A2 ve 1B2 aynı haller arasında herhangi iki hal değişimi olduğundan δQ – δW ifadesinin 1-2 noktası arasındaki bütün hal değişimleri için bağımsız olduğu söylenebilir. Bunların farkı nokta fonksiyonudur ve tam diferansiyeldir. Bu sisteme has bir özellik olup sistemin enerjisidir ve E ile gösterilir (E=δQ-δW) sonsuz küçük hal değişimi için bu formülün integrali alınırsa;
Q1-2 : Sistemin hal değişimindeki ısı alışverişi
W1-2 : Sistemin hal değişimindeki iş alışverişi
E1 : Sistemin ilk haldeki enerjisi ve
E2 : Sistemin son haldeki enerjisi
olmak üzere;
Q1-2 – W1-2 = E2 – E1
formülü çıkar. Termodinamikte enerji, maddenin yapısına bağlı iç enerji ve koordinat eksenlerine bağlı olan kinetik enerji (EK) ve potansiyel enerji (EP) olarak ayrılabilir;
E = U + EK + EP
Sistemin herhangi bir hal değişimindeki enerjisi de;
Q1-2 – W1-2 = E2 – E1 = (U2 – U1) + (1/2) m (V22 – V12) + m g (h2 – h1)
U: iç enerji
m: kütle
V: hız
g: yerçekimi ivmesi
h: yükseklik
ikinci kanunu[değiştir | kaynağı değiştir]
Birçok alanda uygulanabilen ikinci yasa şöyle tanımlanabilir:
Bir ısı kaynağından ısı çekip buna eşit miktarda iş yapan ve başka hiçbir sonucu olmayan bir döngü elde etmek imkânsızdır. (Kelvin-Planck Bildirisi)
ya da Verim asla 1 den büyük olamaz. şeklinde tanımlanabilir.bir başka izah da şöyle olabilir
tek kaynaktan ısı çekerek çalışan bir makine yapmak olası değildir
Soğuk bir cisimden sıcak bir cisme ısı akışı dışında bir etkisi olmayan bir işlem elde etmek imkânsızdır. (Clausius Bildirisi)
Termal olarak izole edilmiş büyük bir sistemin entropisi hiçbir zaman azalmaz (bkz:
Maxwell in Cini). Ancak mikroskopik bir sistem, yasanın dediğinin tersine entropi dalgalanmaları yaşayabilir (bkz:
Dalgalanma Teoremi). Aslında, dalgalanma teoreminin zamana göre tersinebilir dinamik ve nedensellik ilkesinden çıkan matematiksel kanıtı ikinci yasanın bir kanıtını oluşturur. Mantıksal bakımdan ikinci yasa bu şekilde aslında fiziğin bir yasasından ziyade göreli olarak büyük sistemler ve uzun zamanlar için geçerli bir teoremi haline gelir. Ludwig Boltzmann tarafından tanımlanmıştır. Sisteme dışardan enerji verilmediği sürece düzenin düzensizliğe düzensizliğin de kaosa dönüşeceğini anlatır. Kırık bir bardağın durup dururken veya kırarken harcanan enerjiden daha azı kullanılarak eski haline döndürülemeyeceği örneği verilir klagib olarak. Yine aynı şekilde devrilen bir kitabı düzeltmek için devirirken harcanan enerjiden fazlasını kullanmak gerekir, potansiyel enerjinin bir kısmı ısıya dönüşmüştür ve geri getirilemez. Aynı zamanda evrendeki düzensizlik eğilimini de anlatır. Düzensizlik eğilimini anlatırken entropi kelimesini kullanır. Yunanca, en = ingilizcedeki 'in' gibidir, önüne geldiği kelimeye -de, -da eki verir ve tropos = yol kelimesinin çoğulu olan 'tropoi' (tropi diye telaffuz edilir) kelimesinden. Yani; "yolda").
Düzensizlik ya değişmez ya da artar. Örnek olarak difüzyon verilebilir. Ayrı duran maddeler bir arada olandan daha düzenlidir ve kendiliğinden karışmış sıcak ve soğuk sudan oluşmuş ılık suyun, bir daha sıcak ve soğuk diye ayrılması imkânsızdır.
Eskime, yaşlanma, yıllanma gibi eylemlerin nedenidir.
En düzensiz enerji ısıdır ve bir gün gelecek bütün enerji ısı olacaktır ve bu da evrenin sonu demektir.
ileri sürülecek teoriler termodinamiğin 2. kanunuyla çelişmemelidir.
Entropi iş yapma yeteneği olmayan enerji olarak da tanımlanır. iki cam balona farklı sıcaklıklarda gaz, cam balonlar arasına da bir pervane konacak olursa ilk başta pervanenin döndüğünü görülecektir. Fakat sonra entropi arttığı için pervanenin dönmesi duracaktır.
Spor yapmak için bir parkta 100 metrelik bir koşu yapıldığını, 100 metrenin sonunda yorulup koşamayacak hale gelindiğini ve bir yere oturulduğu düşünülecek olursa koşarken harcanmış olan ve bir daha kazanılamayacak olan enerjiye entropi denir.
Sistemin düzensizliği arttıkça artan herhangi bir fonksiyon rahatça entropi fonsiyonu olabilir. Örneğin bir bardak suyumuz olduğunu ve bunun içine bir damla mürekkep damlatıp gözlediğimizi düşünelim ve içeride neler olduğunu hayal etmeye çalışalım. Mürekkep molekülleri başlangıçta kısa bir süre bir arada bekleştikten sonra su içine dağılmaya başlayacaklardır. Çünkü kendilerine çarpan su molekülleri tarafından değişik yönlere itileceklerdir (su ve mürekkep maddelerinin kimyasal bağlarının birbirlerini itmeye elverişli olmalarından dolayı). Şimdi de olağanüstü bir bilgisayarın, sistemin bütün mümkün durumlarını sayabildiğini düşünelim. Sistemin bir durumu denildiğinde anlamamız gereken şey bir molekülün belirli bir koordinata ve belirli bir hıza; bir başka molekülun bir başka belirli koordinata ve hıza sahip olduğu konfigürasyondur. Bardaktaki mürekkep örneğinde bu tür durumların sayısının çok fazla olduğu açıktır. Zira bunların çok büyük bir kısmı mürekkebin moleküllerinin bardak içinde oraya buraya rasgele dağıldığı, düzensiz, yani yüksek entropili durumlara karşılık gelirler. Bizim algıladığımız düzeyde bunların hepsi homojen durumlardır. Çünkü karışıma baktığımızda o molekülün burada, bir başkasının şurada olmasına aldırmadan, mürekkebin homojen olarak dağıldığını söyleyebiliriz. Yani olağanüstü sayıda farklı mikroskopik durum tek bir makroskobik duruma, yani homojen duruma karşılık gelir.
Aslında sistemler bozulmamakta, enerji değişimi bazında en kararlı hali almaya çalışmaktadırlar. Hayatın anlamı da budur, yaşam entropi yollarından biridir, şekerin çaya çok daha çabuk karışmasını sağlayan kaşık işlevindedir.
Kapalı bir sistemde entropi her zaman artar. Kapalı sistem kısmı çok önemlidir. Sisteme enerji vermek suretiyle entropisi azaltılabilir. Dünya kapalı bir sistem değildir. Güneşten sürekli olarak enerji akmaktadır dünyaya, ve düzeni bu sağlar.
"Parçacık sayısı sonsuza giderken olması en muhtemel olan şey olur": Havaya bir miktar bozuk para atılsa hepsinin tura gelme ihtimali yalnızca birdir. Biri dışında hepsinin tura gelme ihtimali daha çoktur. Yarısının yazı, yarısının tura gelme ihtimali daha da çoktur. işte bu sonuncusu maksimum entropiye sahip olan sistemdir. Sonuç olarak entropinin artması, sistemin muhtemel olmayan durumdan daha çok muhtemel olan duruma doğru gitmesi demektir. içinde bulunulan odadaki moleküllerin hepsinin odanın sağ köşesindeki bir noktaya toplanması mümkünse de bu koşulu sağlayan yalnızca bir konfigürasyon vardır. Oysa atomların odanın her yerine eşit dağıldığı daha çok konfigürasyon vardır.
Üçüncü kanunu[değiştir | kaynağı değiştir]
Bu yasa neden bir maddeyi mutlak sıfıra kadar soğutmanın imkânsız olduğunu belirtir: