0
çernobil.avi
Çernobil reaktör kazası
Vikipedi, özgür angiblopedi
Atla: kullan, ara
Çernobil reaktör kazası, bir deney sırasında meydana gelen 20. yüzyılın ilk büyük nükleer kazasıdır. Ukrayna'nın Kiev iline bağlı Çernobil kentindeki Nükleer Güç Reaktörünün 4. ünitesinde 26 Nisan 1986 günü erken saatlerde meydana gelen nükleer kaza sonrasında atmosfere büyük miktarda fisyon ürünleri salındığı 30 Nisan 1986 günü tüm dünya tarafından öğrenildi.
Konu başlıkları
[gizle]
1 Kazanın sebebi
2 Kazanın etkileri
3 ilgili maddeler
4 Referanslar
5 Kaynakça
6 Dış bağlantılar
Kazanın sebebi [değiştir]
Çernobil 4. reaktörün felaketten sonraki durumu
1972’de Ukrayna’daki (O dönemde SSCB’nin bir parçasıydı) Kiev’in 140 km kuzeyinde bulunan Çernobil Nükleer Santralı’nda gerçekleşen kaza, her biri 1.000 Megawatt (MW) gücünde olan dört reaktörüni hatalı tasarımının yanı sıra, reaktörlerden birinde deney yapmak için güvenlik sisteminin devre dışı bırakılıp peşpeşe hatalar meydana gelmesi nedeniyle oldu.
Deneyin yapılacağı 25 Nisan 1986 günü, önce reaktörün gücü yarıya düşürüldü, ardından da acil soğutma sistemi ile deney sırasında reaktörün kapanmasını önlemek için tehlike anında çalışmaya başlayan güvenlik sistemi devre dışı bırakıldı. 26 Nisan günü saat 00:23’i biraz geçe teknisyenler deneyin son hazırlıklarını tamamlamak üzere ek su pompalarını çalıştırdılar. Bunun sonucunda gücünün yüzde 7’siyle çalışmakta olan reaktörde buhar basıncı düştü ve buhar ayırma tamburlarındaki su düzeyi güvenlik sınırının altına indi. Normal olarak bu durumda reaktörün güvenlik sistemine ulaşması gereken sinyaller de teknisyenler tarafından engellendi. Su düzeyini yükseltmek için buhar sistemine koşulların oluştuğuna karar verildi. Büyük patlama ise saat 01:23 meydan geldi.
Deneyin amacı, reaktörün çalışması aniden durdurulduğunda, buhar türbinlerinin daha ne kadar süreyle çalışmayı sürdüreceğini ve böylece ne kadar süre acil güvenlik sistemine güç sağlayabileceğini öğrenmekti. Geriye kalan öteki acil güvenlik sinyali bağlantılarını da kestikten sonra türbinlere giden buhar akışı durduruldu. Bunun sonucunda dolaşım pompaları ve reaktörün soğutma sistemi yavaşladı. Yakıt kanallarında ani bir ısı yükselmesi görüldü ve yapısal özellikleri nedeniyle reaktör tümüyle denetimden çıkmış oldu. Tehlikeyi farkeden teknisyenler reaktörün durdurulmasını sağlamak amacıyla bütün denetim çubuklarını derhal sisteme sokmaya karar verdiler. Ama aşırı derecede ısınmış bulunan reaktörlerde saat 01:26’te, yani deneye başlanmasından bir dakika sonra iki patlama oldu. Bu patlamanın ayrıntıları tam olarak bilinmemekle birlikte, denetim dışı bir çekirdek tepkimesinin gerçekleşmiş olduğu anlaşılmaktadır. Üç saniye içinde reaktörün gücü %7’den %50’ye fırladı. Yakıt parçacıklarının soğutma suyuyla karşılaşması, suyun bir anda buhara dönüşmesine yol açtı. Oluşan aşırı buhar basıncı reaktörün ve santral binasının tepesini uçurdu. Reaktördeki zirkonyum ve grafitin yüksek sıcaklıktaki buharla karşılaşması sonucu oluşan hidrojen yanarak bütün santralı alevler içinde bıraktı.
26 Nisan 1986 saat: 01:23’ te 4 numaralı reaktör çekirdeğinde patlamalara neden olan katastrofik güç artışı yaşadı. Bu patlamalar, atmosfere çok miktarda radyoaktif yakıtın ve ham maddenin yayılmasına, ve kolayca tutşabilen grafit moderatörünün tutuşmasına neden oldu. Reaktör herhangi bir sağlam muhafaza kazanı ile kaplanmadığı için, yanan grafite moderatörü dumanla taşınan radyoaktif parçacıkların yaılımını arttırdı. Normal kapama işleminde meydana gelen kaza olası acil bir durumda devreye giren soğutma özelliği güvenliğinin planlanmış bir testi sırasında oluştu. Yapılmaya Çalışılan Deney:
Nükleer güç reaktörleri, aktif olarak güç üretmediğinde bile, radyoaktif maddelerin bozulma ısısını gidermek için genellikle soğutucu akışı tarafından sağlanan soğutma işlemine ihtiyaç duyar. Basınçlı su reaktörleri, atık ısıyı çıkarmak için yüksek basınçlı su akışını kullanır. Kaza durumundaki bir reaktörün acil olarak durdurulmasından sonra, çekirdek hala başlangıçta tesisin toplam ısı üretiminin yaklaşık olarak % 7’ si kadar ciddi miktarda bir artık ısı üretir. Bu artık ısı soğutucu sistemleri tarafından çıkarılmazsa, ısı çekirdeğin zarar görmesine neden olabilir. Çernobilde patlayan reaktör, yaklaşık olarak 1600 ayrı yakıt kanalından oluşuyordu ve her operasyonel kanal saatte 28 ton’luk (7400galon) su akışına ihtiyaç duyuyordu. Enerji hatları şebekesinin çökmesi durumunda harici gücün, tesisin soğutucu su pompalarını acilen çalıştırmak için uygun olmayacağı yönünde endişeler vardı. Çernobil reaktörlerinin 3 tane yedek dizel jeneratörü vardı. Her jeneratör 15 saniye içinde devreye girebiliyordu, fakat tam hıza ulaşması ve ana soğutucu su pompalarından bir tanesini çalıştırmak için gerekli olan 5.5 MW ‘lik kapasiteye ulaşması 60-75 saniye alıyordu. Bu bir dakikalık güç aralığının kabul edilemez olduğu düşünülüyordu ve buhar tirbünü rotasyonel enerjisi (ya da açısal momentum)ve artık buhar basıncının (tirbün vanaları kapalı), acil durum dizel jeneratörleri yeterli dönme hızına ve voltaja ulaşana kadar, ana soğutucu su pompalarını çalıştırabilecek elektiriği üretmek için kullanılabileceği öne sürülüyordu. Teorik olarak, analizler, bu artık momentumun ve buhar basıncının, acil durum jeneratörlerinden gelen harici enerjinin başlangıcındaki kesinti ve yeterli tam güce ulaşması arasında köprü olabilecek gücü 45 saniyeliğine sağlayabilecek potansiyele sahip olduğunu gösteriyordu. Bu yeterliliğin hala deneysel olarak doğrulanması gerekiyordu ve önceki testler hep başarısızlıkla sonuçlanmıştı. 1982’ de gerçekleştirilen ilk test, tirbün jeneratörünün uyarım voltajının yetersiz kaldığını; türbinin aniden kapanmasından sonra gerekli manyetik alanı devam ettiremediğini, gösterdi. Sistem 1984’ te modifiye edilerek tekrarlandı, fakat sonuç yine başarısız oldu. 1985’ te testler üçüncü sefer yapıldı ve yine olumsuz sonuçlarla bitti. Test prosedürü 1986 da tekrar edilecekti, ve bu testin 4 numaralı reaktörün bakım için kapatılması esnasında yapılması planlandı. Test, reaktörün elektrik kaynaklarının sekanslarını cereyan verme üzerine odaklandı. Test prosedürü, bir acil durum kapatmasıyla başlamış oldu. Reaktörün güvenliği üzerinde zararlı etkisi tahmin edilmiyordu, bu yüzden test programı reaktörün tasarım şefi ya da bilimsel idarecisi ile koordineli olarak yapılmadı. Bunun yerine sadece tesis direktörü tarafından onaylandı. Test parametrelerine göre deneyin başlangıcında reaktörün ısı üretimi 700 MW’ nin altında olmamalıydı. Test koşulları planlandığı gibi olsaydı, test hemen hemen başarıyla gerçekleşebilirdi; nihai felaket, onay verilen test prosedürüne aykırı olarak deney başlar başlamaz reaktör verimini arttırmaya zorlamaktan kaynaklandı. Çernobil santrali, 2 yıl, ilk 60-75 saniye boyunca toplam elektrik gücü kaybını karşılama kapasitesi olmadan çalıştı, ve bu yüzden önemli bir güvenlik özelliğinden yoksundu. istasyon yöneticileri büyük olasılıkla ilk fırsatta bunu düzeltmek istedi, ki bu ciddi sorunlar meydana geldiğinde bile neden deneye devam ettiklerini ve gerekli izni neden Sovyet nükleer bakım düzenleyicisinden almadıklarını açıklar(üstelik 4 no lu reaktörde bir temsilci bulunmasına rağmen. Deney prosedürünün amaçları: 1- Reaktör 700MW-800MW arasında daha düşük bir güç seviyesinde çalışıyor olacaktı. 2- Buhar tirbünü jeneratörü tam hızıyla çalışıyor olacaktı. 3- Bu koşullar sağlandığında, türbin jeneratörünün buhar desteği kapatılacaktı. 4- Türbin jeneratörü performansının, soğutma pompalarına otomatik olarak güç sağlayan ve çalıştıran acil durum dizel jeneratörleri sıralanana kadar, soğutma pompaları için gerekli köprü gücü sağlayıp sağlayamayacağı belirlenecekti. 5- Acil durum jeneratörleri normal yeterli hıza ve voltaja ulaştıktan sonra, türbin jeneratöre serbest bırakılacaktı.
Tümünü Göster