1. 1.
    0
    anan
    ···
  2. 2.
    0
    adam çok haklı beyler @1 şuku
    ···
  3. 3.
    0
    izmirli yannanı yemiş
    ···
  4. 4.
    0
    @10 @14 kale diyosunuzda 5puan fark kaldı amk belediyede

    not:chpliyim amk sadece izmirliler iki yüzlü gibi geliyo
    ···
  5. 5.
    0
    genelleme yaparak konuşmanız saçma beyler, kaç şehirde Atatürk izmirdeki kadar başüstünde tutuluyor bi söylesenize ?
    ···
  6. 6.
    0
    adam aşırı haklı beyler
    ···
  7. 7.
    0
    kızları mı kıskandın oç
    ···
  8. 8.
    0
    oint_c f(z),dz = 0

    ifadesini sağlayan bir f fonksiyonunun d üzerinde holomorf olması gerektiğini ifade eder. morera teoreminin varsayımı, f 'nin d üzerinde terstürevi olduğuna denktir.

    teoremin tersi genel anlamda doğru değildir. holomorf bir fonksiyon, ek varsayımlar konulmadıkça, tanım kümesi üzerinde terstüreve sahip olmak zorunda değildir. örneğin, cauchy integral teoremi, holomorf bir fonksiyonun kapalı bir eğri üzerindeki çizgi integralinin ancak fonksiyonun tanım kümesinin basit bağlantılı olması durumunda sıfır olacağını ifade eder.
    konu başlıkları

    1 kanıt
    2 uygulamalar
    2.1 düzgün limitler
    2.2 sonsuz toplamlar ve integraller
    3 hipotezlerin zayıflatılması
    4 kaynakça
    5 dış bağlantılar

    kanıt
    a 'dan b 'ye iki yol boyunca integraller eşittir çünkü farkları kapalı bir döngü boyunca integraldir.

    görece
    olarak teoremin basit bir kanıtı vardır. f için açıkça bir terstürev oluşturulur. ondan sonra teorem, holomorf fonksiyonlar analitiktir gerçeğinden

    yola çıkılarak kanıtlanır.

    genellemeyi kaybetmeden, d 'nin bağlantılı olduğu varsayılabilir. d içinde bir a noktası sabitlensin ve d üzerinde aşağıdaki gibi karmaşık değerli bir f fonksiyonu tanımlansın:

    f(b) = int_a^b f(z),dz.,

    yukarıdaki integral, d içinde a 'dan b 'ye herhangi bir yol üzerinden alınabilir. burada f fonksiyonu iyi tanımlıdır çünkü hipotez gereği f 'nin a 'dan b 'ye giden herhangi iki eğri boyunca integrali eşittir. hesabın temel teoremi sayesinde f 'nin türevinin f olduğu görülür:

    f'(z) = f(z).,

    özellikle, f holomorftur. o zaman f de holomorf bir fonksiyonun türevi olduğu için holomorftur.
    uygulamalar

    morera teoremi karmaşık analizde standart bir araçtır. bir holomorf fonksiyon cebirsel olmayan bir yolla oluşturulacaksa, hemen hemen tüm argümanlarda morera teoremi kullanılır.
    düzgün limitler

    örneğin, f1, f2, ... açık bir küme üzerinde sürekli bir f fonksiyonuna düzgün bir şekilde yakınsayan bir holomorf fonksiyon dizisi olsun. cauchy integral teoreminden her n için ve disk içinde kapalı her c eğrisi için

    oint_c f_n(z),dz = 0

    ifadesinin doğru olduğu görülür. düzügün yakınsaklık sayesinde de her kapalı c eğrisi için

    oint_c f(z),dz = lim_{nrightarrowinfty} oint_c f_n(z),dz = 0

    ifadesinin doğruluğu biliniyor. bu yüzden, morera teoreminden dolayı f holomorf olmalıdır. bu gerçek, aynı zamanda, herhangi açık bir ω ⊆ c kümesi için, u : ω → c şeklinde tanımlanan sınırlı ve analitik tüm fonksiyonların kümesi a(ω)'nın supremum norm'a göre bir banach uzayı olduğunu göstermek için de kullanılabilir.
    sonsuz toplamlar ve integraller

    morera teoremi ayrıca riemann zeta fonksiyonu

    zeta(s)=sum_{n=1}^infty frac{1}{n^s}

    veya gama fonksiyonu

    gamma(alpha)=int_0^infty x^{alpha-1} e^{-x},dx.

    gibi toplamlar ve integraller yoluyla tanımlanmış fonksiyonların analitikliğini göstermek için de kullanılabilir.

    hipotezlerin zayıflatılması

    morera teoreminin hipotezleri epeyce zayıflatılabilir. özellikle, d bölgesi içindeki her kapalı t üçgeni için

    oint_{partial t} f(z), dz

    integralinin sıfır olması yeterlidir. bu aslında, holomorfiyi ayırıcı bir niteliğe sokar, yani f ancak ve ancak yukarıdaki koşullar sağlanırsa holomorftur.
    ğer her c boyunca sıfırsa, o zaman f, d üzerinde holomorftur.

    matematiğin bir dalı olan karmaşık analizde, giacinto morera'nın ardından adlandırılan morera teoremi, bir fonksiyonun holomorf olduğunu kanıtlamak için önemli bir ölçüttür.

    morera teoremi, karmaşık düzlem üzerindeki açık bir d kümesi üzerinde tanımlı, sürekli, karmaşık değerli ve d içindeki her kapalı c eğrisi için

    oint_c f(z),dz = 0

    ifadesini sağlayan bir f fonksiyonunun d üzerinde holomorf olması gerektiğini ifade eder. morera teoreminin varsayımı, f 'nin d üzerinde terstürevi olduğuna denktir.

    teoremin tersi genel anlamda doğru değildir. holomorf bir fonksiyon, ek varsayımlar konulmadıkça, tanım kümesi üzerinde terstüreve sahip olmak zorunda değildir. örneğin, cauchy integral teoremi, holomorf bir fonksiyonun kapalı bir eğri üzerindeki çizgi integralinin ancak fonksiyonun tanım kümesinin basit bağlantılı olması durumunda sıfır olacağını ifade eder.
    konu başlıkları

    1 kanıt
    2 uygulamalar
    2.1 düzgün limitler
    2.2 sonsuz toplamlar ve integraller
    3 hipotezlerin zayıflatılması
    4 kaynakça
    5 dış bağlantılar

    kanıt
    a 'dan b 'ye iki yol boyunca integraller eşittir çünkü farkları kapalı bir döngü boyunca integraldir.

    görece olarak teoremin basit bir kanıtı vardır. f için açıkça bir terstürev oluşturulur. ondan sonra teorem, holomorf fonksiyonlar analitiktir gerçeğinden yola çıkılarak kanıtlanır.

    genellemeyi kaybetmeden, d 'nin bağlantılı olduğu varsayılabilir. d içinde bir a noktası sabitlensin ve d üzerinde aşağıdaki gibi karmaşık değerli bir f fonksiyonu tanımlansın:

    f(b) = int_a^b f(z),dz.,

    yukarıdaki integral, d içinde a 'dan b 'ye herhangi bir yol üzerinden alınabilir. burada f fonksiyonu iyi tanımlıdır çünkü hipotez gereği f 'nin a 'dan b 'ye giden herhangi iki eğri boyunca integrali eşittir. hesabın temel teoremi sayesinde f 'nin türevinin f olduğu görülür:

    f'(z) = f(z).,

    özellikle, f holomorftur. o zaman f de holomorf bir fonksiyonun türevi olduğu için holomorftur.
    uygulamalar

    morera teoremi karmaşık analizde standart bir araçtır. bir holomorf fonksiyon cebirsel olmayan bir yolla oluşturulacaksa, hemen hemen tüm argümanlarda morera teoremi kullanılır.
    düzgün limitler

    örneğin, f1, f2, ... açık bir küme üzerinde sürekli bir f fonksiyonuna düzgün bir şekilde yakınsayan bir holomorf fonksiyon dizisi olsun. cauchy integral teoreminden her n için ve disk içinde kapalı her c eğrisi için

    oint_c f_n(z),dz = 0

    ifadesinin doğru olduğu görülür. düzügün yakınsaklık sayesinde de her kapalı c eğrisi için

    oint_c f(z),dz = lim_{nrightarrowinfty} oint_c f_n(z),dz = 0

    ifadesinin doğruluğu biliniyor. bu yüzden, morera teoreminden dolayı f holomorf olmalıdır. bu gerçek, aynı zamanda, herhangi açık bir ω ⊆ c kümesi için, u : ω → c şeklinde tanımlanan sınırlı ve analitik tüm fonksiyonların kümesi a(ω)'nın supremum norm'a göre bir banach uzayı olduğunu göstermek için de kullanılabilir.
    sonsuz toplamlar ve integraller

    morera teoremi ayrıca riemann zeta fonksiyonu

    zeta(s)=sum_{n=1}^infty frac{1}{n^s}

    veya gama fonksiyonu

    gamma(alpha)=int_0^infty x^{alpha-1} e^{-x},dx.

    gibi toplamlar ve integraller yoluyla tanımlanmış fonksiyonların analitikliğini göstermek için de kullanılabilir.
    bekleyen değişiklikler bu sayfada görüntülenmektedirkontrol edilmemiş
    atla: kullan, ara
    eğer her c boyunca sıfırsa, o zaman f, d üzerinde holomorftur.

    matematiğin bir dalı olan karmaşık analizde, giacinto morera'nın ardından adlandırılan morera teoremi, bir fonksiyonun holomorf olduğunu kanıtlamak için önemli bir ölçüttür.

    morera teoremi, karmaşık düzlem üzerindeki açık bir d kümesi üzerinde tanımlı, sürekli, karmaşık değerli ve d içindeki her kapalı c eğrisi için

    oint_c f(z),dz = 0

    ifadesini sağlayan bir f fonksiyonunun d üzerinde holomorf olması gerektiğini ifade eder. morera teoreminin varsayımı, f 'nin d üzerinde terstürevi olduğuna denktir.

    teoremin tersi genel anlamda doğru değildir. holomorf bir fonksiyon, ek varsayımlar konulmadıkça, tanım kümesi üzerinde terstüreve sahip olmak zorunda değildir. örneğin, cauchy integral teoremi, holomorf bir fonksiyonun kapalı bir eğri üzerindeki çizgi integralinin ancak fonksiyonun tanım kümesinin basit bağlantılı olması durumunda sıfır olacağını ifade eder.
    konu başlıklarıbekleyen değişiklikler bu sayfada görüntülenmektedirkontrol edilmemiş
    atla: kullan, ara
    eğer her c boyunca sıfırsa, o zaman f, d üzerinde holomorftur.

    matematiğin bir dalı olan karmaşık analizde, giacinto morera'nın ardından adlandırılan morera teoremi, bir fonksiyonun holomorf olduğunu kanıtlamak için önemli bir ölçüttür.

    morera teoremi, karmaşık düzlem üzerindeki açık bir d kümesi üzerinde tanımlı, sürekli, karmaşık değerli ve d içindeki her kapalı c eğrisi için

    oint_c f(z),dz = 0

    ifadesini sağlayan bir f fonksiyonunun d üzerinde holomorf olması gerektiğini ifade eder. morera teoreminin varsayımı, f 'nin d üzerinde terstürevi olduğuna denktir.

    teoremin tersi genel anlamda doğru değildir. holomorf bir fonksiyon, ek varsayımlar konulmadıkça, tanım kümesi üzerinde terstüreve sahip olmak zorunda değildir. örneğin, cauchy integral teoremi, holomorf bir fonksiyonun kapalı bir eğri üzerindeki çizgi integralinin ancak fonksiyonun tanım kümesinin basit bağlantılı olması durumunda sıfır olacağını ifade eder.
    Tümünü Göster
    ···
  9. 9.
    0
    arama entry'ler x
    mahsun redrose
    yemişinci nesil inci sözlük yazarı

    (online)
    genel ulan
    bugün: 77
    bu hafta: 154
    toplam entry: 158
    toplam başlık: 0
    son şukulunan entryleri
    son çükülenen entryleri
    en çok şukulanmış entry'leri
    son girdiği entry'ler
    1. bütün iç anadolulular huur çocuğudur/#110773265
    2. bütün marmaralılar huur çocuğudur/#110773242
    3. bütün egeliler huur çocuğudur/#110773216
    4. bütün doğulular huur çocuğudur/#110773193
    5. nicki mahsun redrose olanlar huur çocuğudur/#110773167
    6. bütün güneydoğulular huur çocuğudur/#110773142
    7. bütün akdenizliler huur çocuğudur/#110773116
    8. bütün karadenizliler huur çocuğudur/#110773093
    9. eskişehirsporluların hepsii huur çocuğudur/#110772726
    10. gençlerbirliğililerin hepsii huur çocuğudur/#110772695
    11. kayserisporluların hepsii huur çocuğudur/#110772670
    12. sivassporluların hepsii huur çocuğudur/#110772644
    13. bursasporluların hepsii huur çocuğudur/#110772590
    14. trabzonsporluların hepsii huur çocuğudur/#110772566
    15. galatasaraylıların hepsii huur çocuğudur/#110772535
    16. beşiktaşlıların hepsii huur çocuğudur/#110772507
    17. fenerbahçelilerin hepsii huur çocuğudur/#110772481
    18. trabzonlular huur çocuğunun önde gidenidir/#110772408
    19. sinoplular huur çocuğunun önde gidenidir/#110772272
    20. halilarslan31in silik yememisi/#110772169
    21. halilarslan31in silik yememisi/#110772141
    22. diyarbakırlılar huur çocuğunn önde gidenidr/#110772067
    23. beyler dıbına sandalye sokan bi karı/#110772010
    24. rizeliler huur çocuğunun önde gidenidir/#110771975
    25. mardinliiler huur çocuğunun önde gidenidir/#110771940
    ilk entry'leri
    ···
  10. 10.
    0
    tüm mahsun redrose liler huur çocuğudur diyoruz o zaman
    ···
  11. 11.
    0
    bence en büyük huur çocuğu sensin
    ···
  12. 12.
    0
    trol detected
    ···
  13. 13.
    0
    kurtuluş savaşı'nda savaşmış izmirli dedemin babası bu lafını duysa sana hakkını helal etmezdi
    ···
  14. 14.
    0
    @9 izmirliler akp li diyosun amk hangi mağaradansın ?
    ···
  15. 15.
    0
    seni izmirli gibmiş belli
    ···
  16. 16.
    0
    @1 izmirli o.ç
    ···
  17. 17.
    0
    @1 hangi izmirli gibtiyse seni sorununu onla çöz kardeşim buraya getirme
    ···
  18. 18.
    0
    ananın peşine kuyruk gibi takılma sen de kendine bi meşgale bul
    ···
  19. 19.
    0
    şu bitmeyen izmir davanızın dıbına koyayım artık.
    ···
  20. 20.
    0
    saat kulesi girsin zütüne bin
    ···