1. 201.
    0
    adamın hipotezi 1742 den beri teori olamamıs şimdi mi olcak amk
    ···
  2. 202.
    0
    petrol rezervi sonra bakıcam
    ···
  3. 203.
    0
    12.5 falandım
    ···
  4. 204.
    0
    @23 sığır adam 2 den büyük demiş
    ···
  5. 205.
    0
    ccc up up up ccc
    ···
  6. 206.
    0
    2+2=4 2X2=4 şimdi gibtir git :D
    ···
  7. 207.
    0
    @86 seni mhp binasına alalım canım 6=3+3.
    ···
  8. 208.
    0
    yakala şükulatanı
    ···
  9. 209.
    0
    @1 asal sayıları tam olark verebilen bir denklem oladığından gibtir git diyorum..
    ···
  10. 210.
    0
    @1 milenyum sorusu terk
    ···
  11. 211.
    0
    tebessüm ettim nedensiz.
    ···
  12. 212.
    0
    Goldbachs Conjection

    Every even number greater than 2 can be written as a sum of two prime numbers.

    ("binary" or "strong" goldbach conjection)

    ______________________________

    Sentence of Bertrand

    Between every natural number n and 2n lies a prime number p (n > 1)

    n <p <2n

    ⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆

    Argumentation:

    1. Construction of a prime number gap where 2n and half of this number n lies in, because this would disprove the Goldbach 2. The prime number gap that contradicts Goldbach 3. End by use of the sentence of Bertrand

    PROOF:

    1. That Goldbach is unattainable for an even number n > 2, the following conditions must be true:

    Definition:

    2n and n stands between the prime numbers (P) Π and Πi with Π < Πi

    A. Π must be smaller than n B. Πi must be greater 2n

    It is logical that there can be no sum of only 2 prime numbers that match Goldbach because Π is smaller then n and Πi is greater then 2n

    We have defined a natural even number 2n and n of this number which would contradict Goldbach, because there is no sum of two prime numbers which could prove 2n.

    2. The prime number gap Π to Πi ∈ N

    Graphics:

    0---pi---n---2n---pii--->

    Prime number gap

    3. Proof end

    After the sentence of Bertrand follows:

    with n> 1: between n and 2n lies at least one prime number

    Out of this follows that in the defined prime number gap which contradicts the Goldach Conjecture a prime number must lie, because n and 2n lie in this gap.

    This stands in the contradiction to the acceptance that this prime number gap exist

    Out of this follows that the Goldbach Conjectur is true and vice versa the sentence of Bertrand

    q.e.d.
    ···
  13. 213.
    0
    31 olmuyodu di mi?
    ···
  14. 214.
    0
    1+3=4 1 asal sayı değil
    ···
  15. 215.
    0
    panpa 4 var 1 ve 3 ün toplamı 1 asal sayı değildir yani önerme yanlıştır ama Goldbach 1 i asal sayı olarak almış

    sonuç : am züt meme
    ···
  16. 216.
    0
    bunu bulana patent + 1 milyon dolar veriyorlar zeki sanıyor bu bin kendini
    ···
  17. 217.
    0
    29+11=40 yapar
    ···
  18. 218.
    0
    2+2=4 2 asal şimdi gibtirin
    ···
  19. 219.
    0
    2 den başa tüm asallar tektir dolayısıyla toplamları çifttir yani yanlıs olduğuna örnek gösteremessin

    benden bu kadar amk gerisini kendin bul
    ···
  20. 220.
    0
    @2 gibmiş beyler dağılalım
    ···