-
326.
0çünkü yaz geldiğini pencere açık yatmamdan anladım
-
327.
0bide erik yedim geçen gün
-
328.
0çok güzeldi yaa :D
-
329.
0işte bütün bunlar mevsimler gibisin değişirsin şarkısını hatırlatsa dinlemeyelim lütfen
-
330.
0annem dedi ki incin olursan düşüncelerin de incin olur o yüzden odanı topla şimdi.
-
331.
0Correlations for heat transfer and pressure dropTümünü Göster
Nomenclature:
D - Hydraulic diameter
L - Flow length
vel - Fluid velocity
Dens - Density
CP - Specific heat capacity
DV - Dynamic viscosity
KV - Kinematic viscosity = DV/Dens
TC - Thermal conductivity
Beta - Thermal expansion coefficient
T,Surf - Surface temperature
T,Amb - Ambient temperature
dT = T,Surf - T,Amb
Grav - Gravity acceleration
Re - Reynolds number = vel*D/KV
Gr - Grashof number = Grav*Beta*abs(dT)*D^3/KV^2
Pr - Prandtl number = KV*CP/TC
Ra - Rayleigh number = Gr*Pr
Nu - Nusselt number = HTC*D/TC
HTC - Heat transfer coefficient
rlRough - Relative coarseness
rFrict - Friction coefficient for fluid flow pressure drop
Lam - Laminar
Tr - Transient
Turb - Turbulent
General forced convection heat transfer:
Re > 10000: HTC = HTCTurb = 0.027*(TC/D)*Re^0.8*Pr^(1/3)
Re < 2300: HTC = HTCLam = 1.86*(TC/D)*Re*Pr*D/L)^(1/3)
2300 < Re < 10000: HTC = HTCTurb*(1-(1-1.86*(L/D)^(-1/3)*(2300/Re)^(3/2))
Laminar forced convection (Kreith & Black):
Nu = 0.664*sqrt(Re)*Pr^(1/3);
Turbulent forced convection (Kreith & Black):
Nu = 0.036*(Re^0.8-23200)*Pr^(1/3);
Forced convection heat transfer for external cross flow over single pipe (Churchill & Bernstein, 1977):
Nu = 0.3 + 0.62*Re^(1/2)*Pr^(1/3)/(1+(0.4/Pr)^(2/3))^0.25*(1+(Re/282000)^(5/8))^(4/5)
Turbulent forced convection heat transfer inside smooth pipes (Sieder & Tate, 1936):
Nu = 0.027*Re^0.8*Pr^(1/3)*(DV/DV,wall)^0.14, Re > 10,000, 0.5 < Pr < 1E6
Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):
Nu = 0.023*Re^0.8*Pr^0.4, dT > 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60
Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):
Nu = 0.023*Re^0.8*Pr^0.3, dT < 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60
General vertical plate free convection (Churchill & Chu, 1975):
Nu = [0.825 + 0.387*Ra^(1/6)/[1 + (0.492/Pr)^(9/16)]^(8/27)]^2, 0.1 < Ra < 1E12
Vertical plate laminar free convection (Kreith & Black):
Nu = 0.59*Ra^(1/4)
Vertical plate turbulent free convection (Kreith & Black):
Nu = 0.10*Ra^(1/3)
Vertical, short pipe external free convection heat transfer (LeFevre & Ede, 1956):
Nu = 4/3*[7*Ra*Pr/[5*(20 + 21*Pr)]]^(1/4) + 4*(272 + 315*Pr)*L/[35*(64 + 63*Pr)*D]
Vertical long pipe internal free convection heat transfer (A. Bejan, 1984):
Nu = Ra/128, L/D > Ra
Horizontal plate stable free convection (Incropera & DeWitt, 1990):
Nu = 0.27*Ra^(1/4), 1E5 < Ra < 1E10
Horizontal plate unstable laminar free convection (Lloyd & Moran, 1974):
Nu = 0.54*Ra^(1/4), 1E4 < Ra < 1E7
Horizontal plate unstable turbulent free convection (Lloyd & Moran, 1974):
Nu = 0.15*Ra^(1/3), 1E7 < Ra < 1E9
Horizontal pipe external free convection heat transfer (Churchill & Chu, 1975):
Nu = [0.6 + 0.387*Ra^(1/6)/[1 + (0.559/Pr)^(9/16)]^(8/27)]^2, 1E-5 < Ra < 1E12
Correlations for pressure drop:
rlRoughMin interpolated in the following table with respect to the Reynolds number Re:
Re: 0 20,000 20,000 100,000 1,000,000 10,000,000 100,000,000
rlRoughMin: 1 1 0.067 0.014 0.0017 0.00019 0.000025
Smooth pipes: (rlRough < rlRoughMin)
Re < 2,000: rFrict = 64/Re,
2,000 < Re < 100,000: rFrict = 0.3164*Re^(-0.25),
Re > 100,000: rFrict = 0.0032+0.221*Re^(-0.237)
Coarse pipes: (rlRough > rlRoughMin)
Re < 2,000: rFrict = 64/Re = rFrict,Lam
2,000 < Re < 3,000: rFrict,Tr = rFrict,Lam+(rFrict, Turb-rFrict,Lam)*(0.001*Re-2)
3,000 < Re < 20,000: rFrict,0 = 0.3164*Re^(-0.25),
rLam,0 = sqrt(rFrict,0)
rLam,n = 1/(1.14-0.868589*ln(rlRough+9.3/(Re*rLam,n-1)))
rFrict = rLam,n*rLam,n = rFrict, Turb
Re > 20,000: rLam = 1/(1.14+0.868589*ln(1/rlRough))
rFrict = rLam*rLam -
332.
0hadi hoşçakalın
-
333.
0Correlations for heat transfer and pressure dropTümünü Göster
Nomenclature:
D - Hydraulic diameter
L - Flow length
vel - Fluid velocity
Dens - Density
CP - Specific heat capacity
DV - Dynamic viscosity
KV - Kinematic viscosity = DV/Dens
TC - Thermal conductivity
Beta - Thermal expansion coefficient
T,Surf - Surface temperature
T,Amb - Ambient temperature
dT = T,Surf - T,Amb
Grav - Gravity acceleration
Re - Reynolds number = vel*D/KV
Gr - Grashof number = Grav*Beta*abs(dT)*D^3/KV^2
Pr - Prandtl number = KV*CP/TC
Ra - Rayleigh number = Gr*Pr
Nu - Nusselt number = HTC*D/TC
HTC - Heat transfer coefficient
rlRough - Relative coarseness
rFrict - Friction coefficient for fluid flow pressure drop
Lam - Laminar
Tr - Transient
Turb - Turbulent
General forced convection heat transfer:
Re > 10000: HTC = HTCTurb = 0.027*(TC/D)*Re^0.8*Pr^(1/3)
Re < 2300: HTC = HTCLam = 1.86*(TC/D)*Re*Pr*D/L)^(1/3)
2300 < Re < 10000: HTC = HTCTurb*(1-(1-1.86*(L/D)^(-1/3)*(2300/Re)^(3/2))
Laminar forced convection (Kreith & Black):
Nu = 0.664*sqrt(Re)*Pr^(1/3);
Turbulent forced convection (Kreith & Black):
Nu = 0.036*(Re^0.8-23200)*Pr^(1/3);
Forced convection heat transfer for external cross flow over single pipe (Churchill & Bernstein, 1977):
Nu = 0.3 + 0.62*Re^(1/2)*Pr^(1/3)/(1+(0.4/Pr)^(2/3))^0.25*(1+(Re/282000)^(5/8))^(4/5)
Turbulent forced convection heat transfer inside smooth pipes (Sieder & Tate, 1936):
Nu = 0.027*Re^0.8*Pr^(1/3)*(DV/DV,wall)^0.14, Re > 10,000, 0.5 < Pr < 1E6
Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):
Nu = 0.023*Re^0.8*Pr^0.4, dT > 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60
Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):
Nu = 0.023*Re^0.8*Pr^0.3, dT < 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60
General vertical plate free convection (Churchill & Chu, 1975):
Nu = [0.825 + 0.387*Ra^(1/6)/[1 + (0.492/Pr)^(9/16)]^(8/27)]^2, 0.1 < Ra < 1E12
Vertical plate laminar free convection (Kreith & Black):
Nu = 0.59*Ra^(1/4)
Vertical plate turbulent free convection (Kreith & Black):
Nu = 0.10*Ra^(1/3)
Vertical, short pipe external free convection heat transfer (LeFevre & Ede, 1956):
Nu = 4/3*[7*Ra*Pr/[5*(20 + 21*Pr)]]^(1/4) + 4*(272 + 315*Pr)*L/[35*(64 + 63*Pr)*D]
Vertical long pipe internal free convection heat transfer (A. Bejan, 1984):
Nu = Ra/128, L/D > Ra
Horizontal plate stable free convection (Incropera & DeWitt, 1990):
Nu = 0.27*Ra^(1/4), 1E5 < Ra < 1E10
Horizontal plate unstable laminar free convection (Lloyd & Moran, 1974):
Nu = 0.54*Ra^(1/4), 1E4 < Ra < 1E7
Horizontal plate unstable turbulent free convection (Lloyd & Moran, 1974):
Nu = 0.15*Ra^(1/3), 1E7 < Ra < 1E9
Horizontal pipe external free convection heat transfer (Churchill & Chu, 1975):
Nu = [0.6 + 0.387*Ra^(1/6)/[1 + (0.559/Pr)^(9/16)]^(8/27)]^2, 1E-5 < Ra < 1E12
Correlations for pressure drop:
rlRoughMin interpolated in the following table with respect to the Reynolds number Re:
Re: 0 20,000 20,000 100,000 1,000,000 10,000,000 100,000,000
rlRoughMin: 1 1 0.067 0.014 0.0017 0.00019 0.000025
Smooth pipes: (rlRough < rlRoughMin)
Re < 2,000: rFrict = 64/Re,
2,000 < Re < 100,000: rFrict = 0.3164*Re^(-0.25),
Re > 100,000: rFrict = 0.0032+0.221*Re^(-0.237)
Coarse pipes: (rlRough > rlRoughMin)
Re < 2,000: rFrict = 64/Re = rFrict,Lam
2,000 < Re < 3,000: rFrict,Tr = rFrict,Lam+(rFrict, Turb-rFrict,Lam)*(0.001*Re-2)
3,000 < Re < 20,000: rFrict,0 = 0.3164*Re^(-0.25),
rLam,0 = sqrt(rFrict,0)
rLam,n = 1/(1.14-0.868589*ln(rlRough+9.3/(Re*rLam,n-1)))
rFrict = rLam,n*rLam,n = rFrict, Turb
Re > 20,000: rLam = 1/(1.14+0.868589*ln(1/rlRough))
rFrict = rLam*rLam -
334.
0Correlations for heat transfer and pressure dropTümünü Göster
Nomenclature:
D - Hydraulic diameter
L - Flow length
vel - Fluid velocity
Dens - Density
CP - Specific heat capacity
DV - Dynamic viscosity
KV - Kinematic viscosity = DV/Dens
TC - Thermal conductivity
Beta - Thermal expansion coefficient
T,Surf - Surface temperature
T,Amb - Ambient temperature
dT = T,Surf - T,Amb
Grav - Gravity acceleration
Re - Reynolds number = vel*D/KV
Gr - Grashof number = Grav*Beta*abs(dT)*D^3/KV^2
Pr - Prandtl number = KV*CP/TC
Ra - Rayleigh number = Gr*Pr
Nu - Nusselt number = HTC*D/TC
HTC - Heat transfer coefficient
rlRough - Relative coarseness
rFrict - Friction coefficient for fluid flow pressure drop
Lam - Laminar
Tr - Transient
Turb - Turbulent
General forced convection heat transfer:
Re > 10000: HTC = HTCTurb = 0.027*(TC/D)*Re^0.8*Pr^(1/3)
Re < 2300: HTC = HTCLam = 1.86*(TC/D)*Re*Pr*D/L)^(1/3)
2300 < Re < 10000: HTC = HTCTurb*(1-(1-1.86*(L/D)^(-1/3)*(2300/Re)^(3/2))
Laminar forced convection (Kreith & Black):
Nu = 0.664*sqrt(Re)*Pr^(1/3);
Turbulent forced convection (Kreith & Black):
Nu = 0.036*(Re^0.8-23200)*Pr^(1/3);
Forced convection heat transfer for external cross flow over single pipe (Churchill & Bernstein, 1977):
Nu = 0.3 + 0.62*Re^(1/2)*Pr^(1/3)/(1+(0.4/Pr)^(2/3))^0.25*(1+(Re/282000)^(5/8))^(4/5)
Turbulent forced convection heat transfer inside smooth pipes (Sieder & Tate, 1936):
Nu = 0.027*Re^0.8*Pr^(1/3)*(DV/DV,wall)^0.14, Re > 10,000, 0.5 < Pr < 1E6
Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):
Nu = 0.023*Re^0.8*Pr^0.4, dT > 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60
Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):
Nu = 0.023*Re^0.8*Pr^0.3, dT < 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60
General vertical plate free convection (Churchill & Chu, 1975):
Nu = [0.825 + 0.387*Ra^(1/6)/[1 + (0.492/Pr)^(9/16)]^(8/27)]^2, 0.1 < Ra < 1E12
Vertical plate laminar free convection (Kreith & Black):
Nu = 0.59*Ra^(1/4)
Vertical plate turbulent free convection (Kreith & Black):
Nu = 0.10*Ra^(1/3)
Vertical, short pipe external free convection heat transfer (LeFevre & Ede, 1956):
Nu = 4/3*[7*Ra*Pr/[5*(20 + 21*Pr)]]^(1/4) + 4*(272 + 315*Pr)*L/[35*(64 + 63*Pr)*D]
Vertical long pipe internal free convection heat transfer (A. Bejan, 1984):
Nu = Ra/128, L/D > Ra
Horizontal plate stable free convection (Incropera & DeWitt, 1990):
Nu = 0.27*Ra^(1/4), 1E5 < Ra < 1E10
Horizontal plate unstable laminar free convection (Lloyd & Moran, 1974):
Nu = 0.54*Ra^(1/4), 1E4 < Ra < 1E7
Horizontal plate unstable turbulent free convection (Lloyd & Moran, 1974):
Nu = 0.15*Ra^(1/3), 1E7 < Ra < 1E9
Horizontal pipe external free convection heat transfer (Churchill & Chu, 1975):
Nu = [0.6 + 0.387*Ra^(1/6)/[1 + (0.559/Pr)^(9/16)]^(8/27)]^2, 1E-5 < Ra < 1E12
Correlations for pressure drop:
rlRoughMin interpolated in the following table with respect to the Reynolds number Re:
Re: 0 20,000 20,000 100,000 1,000,000 10,000,000 100,000,000
rlRoughMin: 1 1 0.067 0.014 0.0017 0.00019 0.000025
Smooth pipes: (rlRough < rlRoughMin)
Re < 2,000: rFrict = 64/Re,
2,000 < Re < 100,000: rFrict = 0.3164*Re^(-0.25),
Re > 100,000: rFrict = 0.0032+0.221*Re^(-0.237)
Coarse pipes: (rlRough > rlRoughMin)
Re < 2,000: rFrict = 64/Re = rFrict,Lam
2,000 < Re < 3,000: rFrict,Tr = rFrict,Lam+(rFrict, Turb-rFrict,Lam)*(0.001*Re-2)
3,000 < Re < 20,000: rFrict,0 = 0.3164*Re^(-0.25),
rLam,0 = sqrt(rFrict,0)
rLam,n = 1/(1.14-0.868589*ln(rlRough+9.3/(Re*rLam,n-1)))
rFrict = rLam,n*rLam,n = rFrict, Turb
Re > 20,000: rLam = 1/(1.14+0.868589*ln(1/rlRough))
rFrict = rLam*rLam -
335.
0Correlations for heat transfer and pressure dropTümünü Göster
Nomenclature:
D - Hydraulic diameter
L - Flow length
vel - Fluid velocity
Dens - Density
CP - Specific heat capacity
DV - Dynamic viscosity
KV - Kinematic viscosity = DV/Dens
TC - Thermal conductivity
Beta - Thermal expansion coefficient
T,Surf - Surface temperature
T,Amb - Ambient temperature
dT = T,Surf - T,Amb
Grav - Gravity acceleration
Re - Reynolds number = vel*D/KV
Gr - Grashof number = Grav*Beta*abs(dT)*D^3/KV^2
Pr - Prandtl number = KV*CP/TC
Ra - Rayleigh number = Gr*Pr
Nu - Nusselt number = HTC*D/TC
HTC - Heat transfer coefficient
rlRough - Relative coarseness
rFrict - Friction coefficient for fluid flow pressure drop
Lam - Laminar
Tr - Transient
Turb - Turbulent
General forced convection heat transfer:
Re > 10000: HTC = HTCTurb = 0.027*(TC/D)*Re^0.8*Pr^(1/3)
Re < 2300: HTC = HTCLam = 1.86*(TC/D)*Re*Pr*D/L)^(1/3)
2300 < Re < 10000: HTC = HTCTurb*(1-(1-1.86*(L/D)^(-1/3)*(2300/Re)^(3/2))
Laminar forced convection (Kreith & Black):
Nu = 0.664*sqrt(Re)*Pr^(1/3);
Turbulent forced convection (Kreith & Black):
Nu = 0.036*(Re^0.8-23200)*Pr^(1/3);
Forced convection heat transfer for external cross flow over single pipe (Churchill & Bernstein, 1977):
Nu = 0.3 + 0.62*Re^(1/2)*Pr^(1/3)/(1+(0.4/Pr)^(2/3))^0.25*(1+(Re/282000)^(5/8))^(4/5)
Turbulent forced convection heat transfer inside smooth pipes (Sieder & Tate, 1936):
Nu = 0.027*Re^0.8*Pr^(1/3)*(DV/DV,wall)^0.14, Re > 10,000, 0.5 < Pr < 1E6
Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):
Nu = 0.023*Re^0.8*Pr^0.4, dT > 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60
Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):
Nu = 0.023*Re^0.8*Pr^0.3, dT < 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60
General vertical plate free convection (Churchill & Chu, 1975):
Nu = [0.825 + 0.387*Ra^(1/6)/[1 + (0.492/Pr)^(9/16)]^(8/27)]^2, 0.1 < Ra < 1E12
Vertical plate laminar free convection (Kreith & Black):
Nu = 0.59*Ra^(1/4)
Vertical plate turbulent free convection (Kreith & Black):
Nu = 0.10*Ra^(1/3)
Vertical, short pipe external free convection heat transfer (LeFevre & Ede, 1956):
Nu = 4/3*[7*Ra*Pr/[5*(20 + 21*Pr)]]^(1/4) + 4*(272 + 315*Pr)*L/[35*(64 + 63*Pr)*D]
Vertical long pipe internal free convection heat transfer (A. Bejan, 1984):
Nu = Ra/128, L/D > Ra
Horizontal plate stable free convection (Incropera & DeWitt, 1990):
Nu = 0.27*Ra^(1/4), 1E5 < Ra < 1E10
Horizontal plate unstable laminar free convection (Lloyd & Moran, 1974):
Nu = 0.54*Ra^(1/4), 1E4 < Ra < 1E7
Horizontal plate unstable turbulent free convection (Lloyd & Moran, 1974):
Nu = 0.15*Ra^(1/3), 1E7 < Ra < 1E9
Horizontal pipe external free convection heat transfer (Churchill & Chu, 1975):
Nu = [0.6 + 0.387*Ra^(1/6)/[1 + (0.559/Pr)^(9/16)]^(8/27)]^2, 1E-5 < Ra < 1E12
Correlations for pressure drop:
rlRoughMin interpolated in the following table with respect to the Reynolds number Re:
Re: 0 20,000 20,000 100,000 1,000,000 10,000,000 100,000,000
rlRoughMin: 1 1 0.067 0.014 0.0017 0.00019 0.000025
Smooth pipes: (rlRough < rlRoughMin)
Re < 2,000: rFrict = 64/Re,
2,000 < Re < 100,000: rFrict = 0.3164*Re^(-0.25),
Re > 100,000: rFrict = 0.0032+0.221*Re^(-0.237)
Coarse pipes: (rlRough > rlRoughMin)
Re < 2,000: rFrict = 64/Re = rFrict,Lam
2,000 < Re < 3,000: rFrict,Tr = rFrict,Lam+(rFrict, Turb-rFrict,Lam)*(0.001*Re-2)
3,000 < Re < 20,000: rFrict,0 = 0.3164*Re^(-0.25),
rLam,0 = sqrt(rFrict,0)
rLam,n = 1/(1.14-0.868589*ln(rlRough+9.3/(Re*rLam,n-1)))
rFrict = rLam,n*rLam,n = rFrict, Turb
Re > 20,000: rLam = 1/(1.14+0.868589*ln(1/rlRough))
rFrict = rLam*rLam -
336.
0gece gelirim belki
-
337.
0Correlations for heat transfer and pressure dropTümünü Göster
Nomenclature:
D - Hydraulic diameter
L - Flow length
vel - Fluid velocity
Dens - Density
CP - Specific heat capacity
DV - Dynamic viscosity
KV - Kinematic viscosity = DV/Dens
TC - Thermal conductivity
Beta - Thermal expansion coefficient
T,Surf - Surface temperature
T,Amb - Ambient temperature
dT = T,Surf - T,Amb
Grav - Gravity acceleration
Re - Reynolds number = vel*D/KV
Gr - Grashof number = Grav*Beta*abs(dT)*D^3/KV^2
Pr - Prandtl number = KV*CP/TC
Ra - Rayleigh number = Gr*Pr
Nu - Nusselt number = HTC*D/TC
HTC - Heat transfer coefficient
rlRough - Relative coarseness
rFrict - Friction coefficient for fluid flow pressure drop
Lam - Laminar
Tr - Transient
Turb - Turbulent
General forced convection heat transfer:
Re > 10000: HTC = HTCTurb = 0.027*(TC/D)*Re^0.8*Pr^(1/3)
Re < 2300: HTC = HTCLam = 1.86*(TC/D)*Re*Pr*D/L)^(1/3)
2300 < Re < 10000: HTC = HTCTurb*(1-(1-1.86*(L/D)^(-1/3)*(2300/Re)^(3/2))
Laminar forced convection (Kreith & Black):
Nu = 0.664*sqrt(Re)*Pr^(1/3);
Turbulent forced convection (Kreith & Black):
Nu = 0.036*(Re^0.8-23200)*Pr^(1/3);
Forced convection heat transfer for external cross flow over single pipe (Churchill & Bernstein, 1977):
Nu = 0.3 + 0.62*Re^(1/2)*Pr^(1/3)/(1+(0.4/Pr)^(2/3))^0.25*(1+(Re/282000)^(5/8))^(4/5)
Turbulent forced convection heat transfer inside smooth pipes (Sieder & Tate, 1936):
Nu = 0.027*Re^0.8*Pr^(1/3)*(DV/DV,wall)^0.14, Re > 10,000, 0.5 < Pr < 1E6
Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):
Nu = 0.023*Re^0.8*Pr^0.4, dT > 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60
Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):
Nu = 0.023*Re^0.8*Pr^0.3, dT < 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60
General vertical plate free convection (Churchill & Chu, 1975):
Nu = [0.825 + 0.387*Ra^(1/6)/[1 + (0.492/Pr)^(9/16)]^(8/27)]^2, 0.1 < Ra < 1E12
Vertical plate laminar free convection (Kreith & Black):
Nu = 0.59*Ra^(1/4)
Vertical plate turbulent free convection (Kreith & Black):
Nu = 0.10*Ra^(1/3)
Vertical, short pipe external free convection heat transfer (LeFevre & Ede, 1956):
Nu = 4/3*[7*Ra*Pr/[5*(20 + 21*Pr)]]^(1/4) + 4*(272 + 315*Pr)*L/[35*(64 + 63*Pr)*D]
Vertical long pipe internal free convection heat transfer (A. Bejan, 1984):
Nu = Ra/128, L/D > Ra
Horizontal plate stable free convection (Incropera & DeWitt, 1990):
Nu = 0.27*Ra^(1/4), 1E5 < Ra < 1E10
Horizontal plate unstable laminar free convection (Lloyd & Moran, 1974):
Nu = 0.54*Ra^(1/4), 1E4 < Ra < 1E7
Horizontal plate unstable turbulent free convection (Lloyd & Moran, 1974):
Nu = 0.15*Ra^(1/3), 1E7 < Ra < 1E9
Horizontal pipe external free convection heat transfer (Churchill & Chu, 1975):
Nu = [0.6 + 0.387*Ra^(1/6)/[1 + (0.559/Pr)^(9/16)]^(8/27)]^2, 1E-5 < Ra < 1E12
Correlations for pressure drop:
rlRoughMin interpolated in the following table with respect to the Reynolds number Re:
Re: 0 20,000 20,000 100,000 1,000,000 10,000,000 100,000,000
rlRoughMin: 1 1 0.067 0.014 0.0017 0.00019 0.000025
Smooth pipes: (rlRough < rlRoughMin)
Re < 2,000: rFrict = 64/Re,
2,000 < Re < 100,000: rFrict = 0.3164*Re^(-0.25),
Re > 100,000: rFrict = 0.0032+0.221*Re^(-0.237)
Coarse pipes: (rlRough > rlRoughMin)
Re < 2,000: rFrict = 64/Re = rFrict,Lam
2,000 < Re < 3,000: rFrict,Tr = rFrict,Lam+(rFrict, Turb-rFrict,Lam)*(0.001*Re-2)
3,000 < Re < 20,000: rFrict,0 = 0.3164*Re^(-0.25),
rLam,0 = sqrt(rFrict,0)
rLam,n = 1/(1.14-0.868589*ln(rlRough+9.3/(Re*rLam,n-1)))
rFrict = rLam,n*rLam,n = rFrict, Turb
Re > 20,000: rLam = 1/(1.14+0.868589*ln(1/rlRough))
rFrict = rLam*rLam -
338.
0ama söz veremem
-
339.
0Correlations for heat transfer and pressure dropTümünü Göster
Nomenclature:
D - Hydraulic diameter
L - Flow length
vel - Fluid velocity
Dens - Density
CP - Specific heat capacity
DV - Dynamic viscosity
KV - Kinematic viscosity = DV/Dens
TC - Thermal conductivity
Beta - Thermal expansion coefficient
T,Surf - Surface temperature
T,Amb - Ambient temperature
dT = T,Surf - T,Amb
Grav - Gravity acceleration
Re - Reynolds number = vel*D/KV
Gr - Grashof number = Grav*Beta*abs(dT)*D^3/KV^2
Pr - Prandtl number = KV*CP/TC
Ra - Rayleigh number = Gr*Pr
Nu - Nusselt number = HTC*D/TC
HTC - Heat transfer coefficient
rlRough - Relative coarseness
rFrict - Friction coefficient for fluid flow pressure drop
Lam - Laminar
Tr - Transient
Turb - Turbulent
General forced convection heat transfer:
Re > 10000: HTC = HTCTurb = 0.027*(TC/D)*Re^0.8*Pr^(1/3)
Re < 2300: HTC = HTCLam = 1.86*(TC/D)*Re*Pr*D/L)^(1/3)
2300 < Re < 10000: HTC = HTCTurb*(1-(1-1.86*(L/D)^(-1/3)*(2300/Re)^(3/2))
Laminar forced convection (Kreith & Black):
Nu = 0.664*sqrt(Re)*Pr^(1/3);
Turbulent forced convection (Kreith & Black):
Nu = 0.036*(Re^0.8-23200)*Pr^(1/3);
Forced convection heat transfer for external cross flow over single pipe (Churchill & Bernstein, 1977):
Nu = 0.3 + 0.62*Re^(1/2)*Pr^(1/3)/(1+(0.4/Pr)^(2/3))^0.25*(1+(Re/282000)^(5/8))^(4/5)
Turbulent forced convection heat transfer inside smooth pipes (Sieder & Tate, 1936):
Nu = 0.027*Re^0.8*Pr^(1/3)*(DV/DV,wall)^0.14, Re > 10,000, 0.5 < Pr < 1E6
Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):
Nu = 0.023*Re^0.8*Pr^0.4, dT > 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60
Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):
Nu = 0.023*Re^0.8*Pr^0.3, dT < 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60
General vertical plate free convection (Churchill & Chu, 1975):
Nu = [0.825 + 0.387*Ra^(1/6)/[1 + (0.492/Pr)^(9/16)]^(8/27)]^2, 0.1 < Ra < 1E12
Vertical plate laminar free convection (Kreith & Black):
Nu = 0.59*Ra^(1/4)
Vertical plate turbulent free convection (Kreith & Black):
Nu = 0.10*Ra^(1/3)
Vertical, short pipe external free convection heat transfer (LeFevre & Ede, 1956):
Nu = 4/3*[7*Ra*Pr/[5*(20 + 21*Pr)]]^(1/4) + 4*(272 + 315*Pr)*L/[35*(64 + 63*Pr)*D]
Vertical long pipe internal free convection heat transfer (A. Bejan, 1984):
Nu = Ra/128, L/D > Ra
Horizontal plate stable free convection (Incropera & DeWitt, 1990):
Nu = 0.27*Ra^(1/4), 1E5 < Ra < 1E10
Horizontal plate unstable laminar free convection (Lloyd & Moran, 1974):
Nu = 0.54*Ra^(1/4), 1E4 < Ra < 1E7
Horizontal plate unstable turbulent free convection (Lloyd & Moran, 1974):
Nu = 0.15*Ra^(1/3), 1E7 < Ra < 1E9
Horizontal pipe external free convection heat transfer (Churchill & Chu, 1975):
Nu = [0.6 + 0.387*Ra^(1/6)/[1 + (0.559/Pr)^(9/16)]^(8/27)]^2, 1E-5 < Ra < 1E12
Correlations for pressure drop:
rlRoughMin interpolated in the following table with respect to the Reynolds number Re:
Re: 0 20,000 20,000 100,000 1,000,000 10,000,000 100,000,000
rlRoughMin: 1 1 0.067 0.014 0.0017 0.00019 0.000025
Smooth pipes: (rlRough < rlRoughMin)
Re < 2,000: rFrict = 64/Re,
2,000 < Re < 100,000: rFrict = 0.3164*Re^(-0.25),
Re > 100,000: rFrict = 0.0032+0.221*Re^(-0.237)
Coarse pipes: (rlRough > rlRoughMin)
Re < 2,000: rFrict = 64/Re = rFrict,Lam
2,000 < Re < 3,000: rFrict,Tr = rFrict,Lam+(rFrict, Turb-rFrict,Lam)*(0.001*Re-2)
3,000 < Re < 20,000: rFrict,0 = 0.3164*Re^(-0.25),
rLam,0 = sqrt(rFrict,0)
rLam,n = 1/(1.14-0.868589*ln(rlRough+9.3/(Re*rLam,n-1)))
rFrict = rLam,n*rLam,n = rFrict, Turb
Re > 20,000: rLam = 1/(1.14+0.868589*ln(1/rlRough))
rFrict = rLam*rLam -
340.
0Correlations for heat transfer and pressure dropTümünü Göster
Nomenclature:
D - Hydraulic diameter
L - Flow length
vel - Fluid velocity
Dens - Density
CP - Specific heat capacity
DV - Dynamic viscosity
KV - Kinematic viscosity = DV/Dens
TC - Thermal conductivity
Beta - Thermal expansion coefficient
T,Surf - Surface temperature
T,Amb - Ambient temperature
dT = T,Surf - T,Amb
Grav - Gravity acceleration
Re - Reynolds number = vel*D/KV
Gr - Grashof number = Grav*Beta*abs(dT)*D^3/KV^2
Pr - Prandtl number = KV*CP/TC
Ra - Rayleigh number = Gr*Pr
Nu - Nusselt number = HTC*D/TC
HTC - Heat transfer coefficient
rlRough - Relative coarseness
rFrict - Friction coefficient for fluid flow pressure drop
Lam - Laminar
Tr - Transient
Turb - Turbulent
General forced convection heat transfer:
Re > 10000: HTC = HTCTurb = 0.027*(TC/D)*Re^0.8*Pr^(1/3)
Re < 2300: HTC = HTCLam = 1.86*(TC/D)*Re*Pr*D/L)^(1/3)
2300 < Re < 10000: HTC = HTCTurb*(1-(1-1.86*(L/D)^(-1/3)*(2300/Re)^(3/2))
Laminar forced convection (Kreith & Black):
Nu = 0.664*sqrt(Re)*Pr^(1/3);
Turbulent forced convection (Kreith & Black):
Nu = 0.036*(Re^0.8-23200)*Pr^(1/3);
Forced convection heat transfer for external cross flow over single pipe (Churchill & Bernstein, 1977):
Nu = 0.3 + 0.62*Re^(1/2)*Pr^(1/3)/(1+(0.4/Pr)^(2/3))^0.25*(1+(Re/282000)^(5/8))^(4/5)
Turbulent forced convection heat transfer inside smooth pipes (Sieder & Tate, 1936):
Nu = 0.027*Re^0.8*Pr^(1/3)*(DV/DV,wall)^0.14, Re > 10,000, 0.5 < Pr < 1E6
Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):
Nu = 0.023*Re^0.8*Pr^0.4, dT > 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60
Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):
Nu = 0.023*Re^0.8*Pr^0.3, dT < 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60
General vertical plate free convection (Churchill & Chu, 1975):
Nu = [0.825 + 0.387*Ra^(1/6)/[1 + (0.492/Pr)^(9/16)]^(8/27)]^2, 0.1 < Ra < 1E12
Vertical plate laminar free convection (Kreith & Black):
Nu = 0.59*Ra^(1/4)
Vertical plate turbulent free convection (Kreith & Black):
Nu = 0.10*Ra^(1/3)
Vertical, short pipe external free convection heat transfer (LeFevre & Ede, 1956):
Nu = 4/3*[7*Ra*Pr/[5*(20 + 21*Pr)]]^(1/4) + 4*(272 + 315*Pr)*L/[35*(64 + 63*Pr)*D]
Vertical long pipe internal free convection heat transfer (A. Bejan, 1984):
Nu = Ra/128, L/D > Ra
Horizontal plate stable free convection (Incropera & DeWitt, 1990):
Nu = 0.27*Ra^(1/4), 1E5 < Ra < 1E10
Horizontal plate unstable laminar free convection (Lloyd & Moran, 1974):
Nu = 0.54*Ra^(1/4), 1E4 < Ra < 1E7
Horizontal plate unstable turbulent free convection (Lloyd & Moran, 1974):
Nu = 0.15*Ra^(1/3), 1E7 < Ra < 1E9
Horizontal pipe external free convection heat transfer (Churchill & Chu, 1975):
Nu = [0.6 + 0.387*Ra^(1/6)/[1 + (0.559/Pr)^(9/16)]^(8/27)]^2, 1E-5 < Ra < 1E12
Correlations for pressure drop:
rlRoughMin interpolated in the following table with respect to the Reynolds number Re:
Re: 0 20,000 20,000 100,000 1,000,000 10,000,000 100,000,000
rlRoughMin: 1 1 0.067 0.014 0.0017 0.00019 0.000025
Smooth pipes: (rlRough < rlRoughMin)
Re < 2,000: rFrict = 64/Re,
2,000 < Re < 100,000: rFrict = 0.3164*Re^(-0.25),
Re > 100,000: rFrict = 0.0032+0.221*Re^(-0.237)
Coarse pipes: (rlRough > rlRoughMin)
Re < 2,000: rFrict = 64/Re = rFrict,Lam
2,000 < Re < 3,000: rFrict,Tr = rFrict,Lam+(rFrict, Turb-rFrict,Lam)*(0.001*Re-2)
3,000 < Re < 20,000: rFrict,0 = 0.3164*Re^(-0.25),
rLam,0 = sqrt(rFrict,0)
rLam,n = 1/(1.14-0.868589*ln(rlRough+9.3/(Re*rLam,n-1)))
rFrict = rLam,n*rLam,n = rFrict, Turb
Re > 20,000: rLam = 1/(1.14+0.868589*ln(1/rlRough))
rFrict = rLam*rLam -
341.
0Correlations for heat transfer and pressure dropTümünü Göster
Nomenclature:
D - Hydraulic diameter
L - Flow length
vel - Fluid velocity
Dens - Density
CP - Specific heat capacity
DV - Dynamic viscosity
KV - Kinematic viscosity = DV/Dens
TC - Thermal conductivity
Beta - Thermal expansion coefficient
T,Surf - Surface temperature
T,Amb - Ambient temperature
dT = T,Surf - T,Amb
Grav - Gravity acceleration
Re - Reynolds number = vel*D/KV
Gr - Grashof number = Grav*Beta*abs(dT)*D^3/KV^2
Pr - Prandtl number = KV*CP/TC
Ra - Rayleigh number = Gr*Pr
Nu - Nusselt number = HTC*D/TC
HTC - Heat transfer coefficient
rlRough - Relative coarseness
rFrict - Friction coefficient for fluid flow pressure drop
Lam - Laminar
Tr - Transient
Turb - Turbulent
General forced convection heat transfer:
Re > 10000: HTC = HTCTurb = 0.027*(TC/D)*Re^0.8*Pr^(1/3)
Re < 2300: HTC = HTCLam = 1.86*(TC/D)*Re*Pr*D/L)^(1/3)
2300 < Re < 10000: HTC = HTCTurb*(1-(1-1.86*(L/D)^(-1/3)*(2300/Re)^(3/2))
Laminar forced convection (Kreith & Black):
Nu = 0.664*sqrt(Re)*Pr^(1/3);
Turbulent forced convection (Kreith & Black):
Nu = 0.036*(Re^0.8-23200)*Pr^(1/3);
Forced convection heat transfer for external cross flow over single pipe (Churchill & Bernstein, 1977):
Nu = 0.3 + 0.62*Re^(1/2)*Pr^(1/3)/(1+(0.4/Pr)^(2/3))^0.25*(1+(Re/282000)^(5/8))^(4/5)
Turbulent forced convection heat transfer inside smooth pipes (Sieder & Tate, 1936):
Nu = 0.027*Re^0.8*Pr^(1/3)*(DV/DV,wall)^0.14, Re > 10,000, 0.5 < Pr < 1E6
Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):
Nu = 0.023*Re^0.8*Pr^0.4, dT > 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60
Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):
Nu = 0.023*Re^0.8*Pr^0.3, dT < 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60
General vertical plate free convection (Churchill & Chu, 1975):
Nu = [0.825 + 0.387*Ra^(1/6)/[1 + (0.492/Pr)^(9/16)]^(8/27)]^2, 0.1 < Ra < 1E12
Vertical plate laminar free convection (Kreith & Black):
Nu = 0.59*Ra^(1/4)
Vertical plate turbulent free convection (Kreith & Black):
Nu = 0.10*Ra^(1/3)
Vertical, short pipe external free convection heat transfer (LeFevre & Ede, 1956):
Nu = 4/3*[7*Ra*Pr/[5*(20 + 21*Pr)]]^(1/4) + 4*(272 + 315*Pr)*L/[35*(64 + 63*Pr)*D]
Vertical long pipe internal free convection heat transfer (A. Bejan, 1984):
Nu = Ra/128, L/D > Ra
Horizontal plate stable free convection (Incropera & DeWitt, 1990):
Nu = 0.27*Ra^(1/4), 1E5 < Ra < 1E10
Horizontal plate unstable laminar free convection (Lloyd & Moran, 1974):
Nu = 0.54*Ra^(1/4), 1E4 < Ra < 1E7
Horizontal plate unstable turbulent free convection (Lloyd & Moran, 1974):
Nu = 0.15*Ra^(1/3), 1E7 < Ra < 1E9
Horizontal pipe external free convection heat transfer (Churchill & Chu, 1975):
Nu = [0.6 + 0.387*Ra^(1/6)/[1 + (0.559/Pr)^(9/16)]^(8/27)]^2, 1E-5 < Ra < 1E12
Correlations for pressure drop:
rlRoughMin interpolated in the following table with respect to the Reynolds number Re:
Re: 0 20,000 20,000 100,000 1,000,000 10,000,000 100,000,000
rlRoughMin: 1 1 0.067 0.014 0.0017 0.00019 0.000025
Smooth pipes: (rlRough < rlRoughMin)
Re < 2,000: rFrict = 64/Re,
2,000 < Re < 100,000: rFrict = 0.3164*Re^(-0.25),
Re > 100,000: rFrict = 0.0032+0.221*Re^(-0.237)
Coarse pipes: (rlRough > rlRoughMin)
Re < 2,000: rFrict = 64/Re = rFrict,Lam
2,000 < Re < 3,000: rFrict,Tr = rFrict,Lam+(rFrict, Turb-rFrict,Lam)*(0.001*Re-2)
3,000 < Re < 20,000: rFrict,0 = 0.3164*Re^(-0.25),
rLam,0 = sqrt(rFrict,0)
rLam,n = 1/(1.14-0.868589*ln(rlRough+9.3/(Re*rLam,n-1)))
rFrict = rLam,n*rLam,n = rFrict, Turb
Re > 20,000: rLam = 1/(1.14+0.868589*ln(1/rlRough))
rFrict = rLam*rLam -
342.
0Correlations for heat transfer and pressure dropTümünü Göster
Nomenclature:
D - Hydraulic diameter
L - Flow length
vel - Fluid velocity
Dens - Density
CP - Specific heat capacity
DV - Dynamic viscosity
KV - Kinematic viscosity = DV/Dens
TC - Thermal conductivity
Beta - Thermal expansion coefficient
T,Surf - Surface temperature
T,Amb - Ambient temperature
dT = T,Surf - T,Amb
Grav - Gravity acceleration
Re - Reynolds number = vel*D/KV
Gr - Grashof number = Grav*Beta*abs(dT)*D^3/KV^2
Pr - Prandtl number = KV*CP/TC
Ra - Rayleigh number = Gr*Pr
Nu - Nusselt number = HTC*D/TC
HTC - Heat transfer coefficient
rlRough - Relative coarseness
rFrict - Friction coefficient for fluid flow pressure drop
Lam - Laminar
Tr - Transient
Turb - Turbulent
General forced convection heat transfer:
Re > 10000: HTC = HTCTurb = 0.027*(TC/D)*Re^0.8*Pr^(1/3)
Re < 2300: HTC = HTCLam = 1.86*(TC/D)*Re*Pr*D/L)^(1/3)
2300 < Re < 10000: HTC = HTCTurb*(1-(1-1.86*(L/D)^(-1/3)*(2300/Re)^(3/2))
Laminar forced convection (Kreith & Black):
Nu = 0.664*sqrt(Re)*Pr^(1/3);
Turbulent forced convection (Kreith & Black):
Nu = 0.036*(Re^0.8-23200)*Pr^(1/3);
Forced convection heat transfer for external cross flow over single pipe (Churchill & Bernstein, 1977):
Nu = 0.3 + 0.62*Re^(1/2)*Pr^(1/3)/(1+(0.4/Pr)^(2/3))^0.25*(1+(Re/282000)^(5/8))^(4/5)
Turbulent forced convection heat transfer inside smooth pipes (Sieder & Tate, 1936):
Nu = 0.027*Re^0.8*Pr^(1/3)*(DV/DV,wall)^0.14, Re > 10,000, 0.5 < Pr < 1E6
Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):
Nu = 0.023*Re^0.8*Pr^0.4, dT > 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60
Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):
Nu = 0.023*Re^0.8*Pr^0.3, dT < 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60
General vertical plate free convection (Churchill & Chu, 1975):
Nu = [0.825 + 0.387*Ra^(1/6)/[1 + (0.492/Pr)^(9/16)]^(8/27)]^2, 0.1 < Ra < 1E12
Vertical plate laminar free convection (Kreith & Black):
Nu = 0.59*Ra^(1/4)
Vertical plate turbulent free convection (Kreith & Black):
Nu = 0.10*Ra^(1/3)
Vertical, short pipe external free convection heat transfer (LeFevre & Ede, 1956):
Nu = 4/3*[7*Ra*Pr/[5*(20 + 21*Pr)]]^(1/4) + 4*(272 + 315*Pr)*L/[35*(64 + 63*Pr)*D]
Vertical long pipe internal free convection heat transfer (A. Bejan, 1984):
Nu = Ra/128, L/D > Ra
Horizontal plate stable free convection (Incropera & DeWitt, 1990):
Nu = 0.27*Ra^(1/4), 1E5 < Ra < 1E10
Horizontal plate unstable laminar free convection (Lloyd & Moran, 1974):
Nu = 0.54*Ra^(1/4), 1E4 < Ra < 1E7
Horizontal plate unstable turbulent free convection (Lloyd & Moran, 1974):
Nu = 0.15*Ra^(1/3), 1E7 < Ra < 1E9
Horizontal pipe external free convection heat transfer (Churchill & Chu, 1975):
Nu = [0.6 + 0.387*Ra^(1/6)/[1 + (0.559/Pr)^(9/16)]^(8/27)]^2, 1E-5 < Ra < 1E12
Correlations for pressure drop:
rlRoughMin interpolated in the following table with respect to the Reynolds number Re:
Re: 0 20,000 20,000 100,000 1,000,000 10,000,000 100,000,000
rlRoughMin: 1 1 0.067 0.014 0.0017 0.00019 0.000025
Smooth pipes: (rlRough < rlRoughMin)
Re < 2,000: rFrict = 64/Re,
2,000 < Re < 100,000: rFrict = 0.3164*Re^(-0.25),
Re > 100,000: rFrict = 0.0032+0.221*Re^(-0.237)
Coarse pipes: (rlRough > rlRoughMin)
Re < 2,000: rFrict = 64/Re = rFrict,Lam
2,000 < Re < 3,000: rFrict,Tr = rFrict,Lam+(rFrict, Turb-rFrict,Lam)*(0.001*Re-2)
3,000 < Re < 20,000: rFrict,0 = 0.3164*Re^(-0.25),
rLam,0 = sqrt(rFrict,0)
rLam,n = 1/(1.14-0.868589*ln(rlRough+9.3/(Re*rLam,n-1)))
rFrict = rLam,n*rLam,n = rFrict, Turb
Re > 20,000: rLam = 1/(1.14+0.868589*ln(1/rlRough))
rFrict = rLam*rLam -
343.
0Correlations for heat transfer and pressure dropTümünü Göster
Nomenclature:
D - Hydraulic diameter
L - Flow length
vel - Fluid velocity
Dens - Density
CP - Specific heat capacity
DV - Dynamic viscosity
KV - Kinematic viscosity = DV/Dens
TC - Thermal conductivity
Beta - Thermal expansion coefficient
T,Surf - Surface temperature
T,Amb - Ambient temperature
dT = T,Surf - T,Amb
Grav - Gravity acceleration
Re - Reynolds number = vel*D/KV
Gr - Grashof number = Grav*Beta*abs(dT)*D^3/KV^2
Pr - Prandtl number = KV*CP/TC
Ra - Rayleigh number = Gr*Pr
Nu - Nusselt number = HTC*D/TC
HTC - Heat transfer coefficient
rlRough - Relative coarseness
rFrict - Friction coefficient for fluid flow pressure drop
Lam - Laminar
Tr - Transient
Turb - Turbulent
General forced convection heat transfer:
Re > 10000: HTC = HTCTurb = 0.027*(TC/D)*Re^0.8*Pr^(1/3)
Re < 2300: HTC = HTCLam = 1.86*(TC/D)*Re*Pr*D/L)^(1/3)
2300 < Re < 10000: HTC = HTCTurb*(1-(1-1.86*(L/D)^(-1/3)*(2300/Re)^(3/2))
Laminar forced convection (Kreith & Black):
Nu = 0.664*sqrt(Re)*Pr^(1/3);
Turbulent forced convection (Kreith & Black):
Nu = 0.036*(Re^0.8-23200)*Pr^(1/3);
Forced convection heat transfer for external cross flow over single pipe (Churchill & Bernstein, 1977):
Nu = 0.3 + 0.62*Re^(1/2)*Pr^(1/3)/(1+(0.4/Pr)^(2/3))^0.25*(1+(Re/282000)^(5/8))^(4/5)
Turbulent forced convection heat transfer inside smooth pipes (Sieder & Tate, 1936):
Nu = 0.027*Re^0.8*Pr^(1/3)*(DV/DV,wall)^0.14, Re > 10,000, 0.5 < Pr < 1E6
Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):
Nu = 0.023*Re^0.8*Pr^0.4, dT > 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60
Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):
Nu = 0.023*Re^0.8*Pr^0.3, dT < 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60
General vertical plate free convection (Churchill & Chu, 1975):
Nu = [0.825 + 0.387*Ra^(1/6)/[1 + (0.492/Pr)^(9/16)]^(8/27)]^2, 0.1 < Ra < 1E12
Vertical plate laminar free convection (Kreith & Black):
Nu = 0.59*Ra^(1/4)
Vertical plate turbulent free convection (Kreith & Black):
Nu = 0.10*Ra^(1/3)
Vertical, short pipe external free convection heat transfer (LeFevre & Ede, 1956):
Nu = 4/3*[7*Ra*Pr/[5*(20 + 21*Pr)]]^(1/4) + 4*(272 + 315*Pr)*L/[35*(64 + 63*Pr)*D]
Vertical long pipe internal free convection heat transfer (A. Bejan, 1984):
Nu = Ra/128, L/D > Ra
Horizontal plate stable free convection (Incropera & DeWitt, 1990):
Nu = 0.27*Ra^(1/4), 1E5 < Ra < 1E10
Horizontal plate unstable laminar free convection (Lloyd & Moran, 1974):
Nu = 0.54*Ra^(1/4), 1E4 < Ra < 1E7
Horizontal plate unstable turbulent free convection (Lloyd & Moran, 1974):
Nu = 0.15*Ra^(1/3), 1E7 < Ra < 1E9
Horizontal pipe external free convection heat transfer (Churchill & Chu, 1975):
Nu = [0.6 + 0.387*Ra^(1/6)/[1 + (0.559/Pr)^(9/16)]^(8/27)]^2, 1E-5 < Ra < 1E12
Correlations for pressure drop:
rlRoughMin interpolated in the following table with respect to the Reynolds number Re:
Re: 0 20,000 20,000 100,000 1,000,000 10,000,000 100,000,000
rlRoughMin: 1 1 0.067 0.014 0.0017 0.00019 0.000025
Smooth pipes: (rlRough < rlRoughMin)
Re < 2,000: rFrict = 64/Re,
2,000 < Re < 100,000: rFrict = 0.3164*Re^(-0.25),
Re > 100,000: rFrict = 0.0032+0.221*Re^(-0.237)
Coarse pipes: (rlRough > rlRoughMin)
Re < 2,000: rFrict = 64/Re = rFrict,Lam
2,000 < Re < 3,000: rFrict,Tr = rFrict,Lam+(rFrict, Turb-rFrict,Lam)*(0.001*Re-2)
3,000 < Re < 20,000: rFrict,0 = 0.3164*Re^(-0.25),
rLam,0 = sqrt(rFrict,0)
rLam,n = 1/(1.14-0.868589*ln(rlRough+9.3/(Re*rLam,n-1)))
rFrict = rLam,n*rLam,n = rFrict, Turb
Re > 20,000: rLam = 1/(1.14+0.868589*ln(1/rlRough))
rFrict = rLam*rLam -
344.
0@1 giblemeyin beyler belki gider
- 345.
-
hakikimall vardi aga be
-
cok konusma wow girlcik
-
ccc rammstein ccc günaydın diler 26 11 2024
-
ramstein nobete misin
-
google yazinca cikmiyan sozlluk
-
kan bagisi yapmam aga
-
ulan birfoto atsan nolur
-
pümberte abim
-
29 11 2024 cumaya gelmiyenlerr
-
wow girl nude bir fotonu pm kutuma
-
pehh yine akşamı ettik pehh 25 11 2024 19 05
-
böcek eti yiyceksiniz nakit para kulanmıcaksınız
-
nıdya
-
hani inci disk yanınca 2020 ye ışınlandı ya
-
allahtan başka tanrı olmadığına
-
birgün ateist hocaya hoca hoca ben
-
ulob
-
kadinlar niye içine alıyor
-
bana 10 yıl önce bir o çocuğu
-
havalar sogudu iyice
-
zalinazurt ablana selam söyle
-
inci puan ne gibeme yarar zaten
-
topal odlek ordek gezmeye gidiyor 26 11 2024
-
lögnib
-
siltib
-
26 kasım 2024
-
yabancılar türkiyeceyi kolayca öğreniyor
-
birgün hoca gölde otururken yanınaa mümn
-
casino royale synopsis
-
allah ım mutlak üstün subhan
- / 2