1. 326.
    0
    çünkü yaz geldiğini pencere açık yatmamdan anladım
    ···
  2. 327.
    0
    bide erik yedim geçen gün
    ···
  3. 328.
    0
    çok güzeldi yaa :D
    ···
  4. 329.
    0
    işte bütün bunlar mevsimler gibisin değişirsin şarkısını hatırlatsa dinlemeyelim lütfen
    ···
  5. 330.
    0
    annem dedi ki incin olursan düşüncelerin de incin olur o yüzden odanı topla şimdi.
    ···
  6. 331.
    0
    Correlations for heat transfer and pressure drop

    Nomenclature:

    D - Hydraulic diameter
    L - Flow length
    vel - Fluid velocity
    Dens - Density
    CP - Specific heat capacity
    DV - Dynamic viscosity
    KV - Kinematic viscosity = DV/Dens
    TC - Thermal conductivity
    Beta - Thermal expansion coefficient
    T,Surf - Surface temperature
    T,Amb - Ambient temperature
    dT = T,Surf - T,Amb
    Grav - Gravity acceleration
    Re - Reynolds number = vel*D/KV
    Gr - Grashof number = Grav*Beta*abs(dT)*D^3/KV^2
    Pr - Prandtl number = KV*CP/TC
    Ra - Rayleigh number = Gr*Pr
    Nu - Nusselt number = HTC*D/TC
    HTC - Heat transfer coefficient
    rlRough - Relative coarseness
    rFrict - Friction coefficient for fluid flow pressure drop
    Lam - Laminar
    Tr - Transient
    Turb - Turbulent

    General forced convection heat transfer:

    Re > 10000: HTC = HTCTurb = 0.027*(TC/D)*Re^0.8*Pr^(1/3)
    Re < 2300: HTC = HTCLam = 1.86*(TC/D)*Re*Pr*D/L)^(1/3)
    2300 < Re < 10000: HTC = HTCTurb*(1-(1-1.86*(L/D)^(-1/3)*(2300/Re)^(3/2))

    Laminar forced convection (Kreith & Black):

    Nu = 0.664*sqrt(Re)*Pr^(1/3);

    Turbulent forced convection (Kreith & Black):

    Nu = 0.036*(Re^0.8-23200)*Pr^(1/3);

    Forced convection heat transfer for external cross flow over single pipe (Churchill & Bernstein, 1977):

    Nu = 0.3 + 0.62*Re^(1/2)*Pr^(1/3)/(1+(0.4/Pr)^(2/3))^0.25*(1+(Re/282000)^(5/8))^(4/5)

    Turbulent forced convection heat transfer inside smooth pipes (Sieder & Tate, 1936):

    Nu = 0.027*Re^0.8*Pr^(1/3)*(DV/DV,wall)^0.14, Re > 10,000, 0.5 < Pr < 1E6

    Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):

    Nu = 0.023*Re^0.8*Pr^0.4, dT > 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60

    Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):

    Nu = 0.023*Re^0.8*Pr^0.3, dT < 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60

    General vertical plate free convection (Churchill & Chu, 1975):

    Nu = [0.825 + 0.387*Ra^(1/6)/[1 + (0.492/Pr)^(9/16)]^(8/27)]^2, 0.1 < Ra < 1E12

    Vertical plate laminar free convection (Kreith & Black):

    Nu = 0.59*Ra^(1/4)

    Vertical plate turbulent free convection (Kreith & Black):

    Nu = 0.10*Ra^(1/3)

    Vertical, short pipe external free convection heat transfer (LeFevre & Ede, 1956):

    Nu = 4/3*[7*Ra*Pr/[5*(20 + 21*Pr)]]^(1/4) + 4*(272 + 315*Pr)*L/[35*(64 + 63*Pr)*D]

    Vertical long pipe internal free convection heat transfer (A. Bejan, 1984):

    Nu = Ra/128, L/D > Ra

    Horizontal plate stable free convection (Incropera & DeWitt, 1990):

    Nu = 0.27*Ra^(1/4), 1E5 < Ra < 1E10

    Horizontal plate unstable laminar free convection (Lloyd & Moran, 1974):

    Nu = 0.54*Ra^(1/4), 1E4 < Ra < 1E7

    Horizontal plate unstable turbulent free convection (Lloyd & Moran, 1974):

    Nu = 0.15*Ra^(1/3), 1E7 < Ra < 1E9

    Horizontal pipe external free convection heat transfer (Churchill & Chu, 1975):

    Nu = [0.6 + 0.387*Ra^(1/6)/[1 + (0.559/Pr)^(9/16)]^(8/27)]^2, 1E-5 < Ra < 1E12

    Correlations for pressure drop:
    rlRoughMin interpolated in the following table with respect to the Reynolds number Re:

    Re: 0 20,000 20,000 100,000 1,000,000 10,000,000 100,000,000
    rlRoughMin: 1 1 0.067 0.014 0.0017 0.00019 0.000025

    Smooth pipes: (rlRough < rlRoughMin)

    Re < 2,000: rFrict = 64/Re,
    2,000 < Re < 100,000: rFrict = 0.3164*Re^(-0.25),
    Re > 100,000: rFrict = 0.0032+0.221*Re^(-0.237)

    Coarse pipes: (rlRough > rlRoughMin)

    Re < 2,000: rFrict = 64/Re = rFrict,Lam
    2,000 < Re < 3,000: rFrict,Tr = rFrict,Lam+(rFrict, Turb-rFrict,Lam)*(0.001*Re-2)
    3,000 < Re < 20,000: rFrict,0 = 0.3164*Re^(-0.25),
    rLam,0 = sqrt(rFrict,0)
    rLam,n = 1/(1.14-0.868589*ln(rlRough+9.3/(Re*rLam,n-1)))
    rFrict = rLam,n*rLam,n = rFrict, Turb
    Re > 20,000: rLam = 1/(1.14+0.868589*ln(1/rlRough))
    rFrict = rLam*rLam
    Tümünü Göster
    ···
  7. 332.
    0
    hadi hoşçakalın
    ···
  8. 333.
    0
    Correlations for heat transfer and pressure drop

    Nomenclature:

    D - Hydraulic diameter
    L - Flow length
    vel - Fluid velocity
    Dens - Density
    CP - Specific heat capacity
    DV - Dynamic viscosity
    KV - Kinematic viscosity = DV/Dens
    TC - Thermal conductivity
    Beta - Thermal expansion coefficient
    T,Surf - Surface temperature
    T,Amb - Ambient temperature
    dT = T,Surf - T,Amb
    Grav - Gravity acceleration
    Re - Reynolds number = vel*D/KV
    Gr - Grashof number = Grav*Beta*abs(dT)*D^3/KV^2
    Pr - Prandtl number = KV*CP/TC
    Ra - Rayleigh number = Gr*Pr
    Nu - Nusselt number = HTC*D/TC
    HTC - Heat transfer coefficient
    rlRough - Relative coarseness
    rFrict - Friction coefficient for fluid flow pressure drop
    Lam - Laminar
    Tr - Transient
    Turb - Turbulent

    General forced convection heat transfer:

    Re > 10000: HTC = HTCTurb = 0.027*(TC/D)*Re^0.8*Pr^(1/3)
    Re < 2300: HTC = HTCLam = 1.86*(TC/D)*Re*Pr*D/L)^(1/3)
    2300 < Re < 10000: HTC = HTCTurb*(1-(1-1.86*(L/D)^(-1/3)*(2300/Re)^(3/2))

    Laminar forced convection (Kreith & Black):

    Nu = 0.664*sqrt(Re)*Pr^(1/3);

    Turbulent forced convection (Kreith & Black):

    Nu = 0.036*(Re^0.8-23200)*Pr^(1/3);

    Forced convection heat transfer for external cross flow over single pipe (Churchill & Bernstein, 1977):

    Nu = 0.3 + 0.62*Re^(1/2)*Pr^(1/3)/(1+(0.4/Pr)^(2/3))^0.25*(1+(Re/282000)^(5/8))^(4/5)

    Turbulent forced convection heat transfer inside smooth pipes (Sieder & Tate, 1936):

    Nu = 0.027*Re^0.8*Pr^(1/3)*(DV/DV,wall)^0.14, Re > 10,000, 0.5 < Pr < 1E6

    Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):

    Nu = 0.023*Re^0.8*Pr^0.4, dT > 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60

    Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):

    Nu = 0.023*Re^0.8*Pr^0.3, dT < 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60

    General vertical plate free convection (Churchill & Chu, 1975):

    Nu = [0.825 + 0.387*Ra^(1/6)/[1 + (0.492/Pr)^(9/16)]^(8/27)]^2, 0.1 < Ra < 1E12

    Vertical plate laminar free convection (Kreith & Black):

    Nu = 0.59*Ra^(1/4)

    Vertical plate turbulent free convection (Kreith & Black):

    Nu = 0.10*Ra^(1/3)

    Vertical, short pipe external free convection heat transfer (LeFevre & Ede, 1956):

    Nu = 4/3*[7*Ra*Pr/[5*(20 + 21*Pr)]]^(1/4) + 4*(272 + 315*Pr)*L/[35*(64 + 63*Pr)*D]

    Vertical long pipe internal free convection heat transfer (A. Bejan, 1984):

    Nu = Ra/128, L/D > Ra

    Horizontal plate stable free convection (Incropera & DeWitt, 1990):

    Nu = 0.27*Ra^(1/4), 1E5 < Ra < 1E10

    Horizontal plate unstable laminar free convection (Lloyd & Moran, 1974):

    Nu = 0.54*Ra^(1/4), 1E4 < Ra < 1E7

    Horizontal plate unstable turbulent free convection (Lloyd & Moran, 1974):

    Nu = 0.15*Ra^(1/3), 1E7 < Ra < 1E9

    Horizontal pipe external free convection heat transfer (Churchill & Chu, 1975):

    Nu = [0.6 + 0.387*Ra^(1/6)/[1 + (0.559/Pr)^(9/16)]^(8/27)]^2, 1E-5 < Ra < 1E12

    Correlations for pressure drop:
    rlRoughMin interpolated in the following table with respect to the Reynolds number Re:

    Re: 0 20,000 20,000 100,000 1,000,000 10,000,000 100,000,000
    rlRoughMin: 1 1 0.067 0.014 0.0017 0.00019 0.000025

    Smooth pipes: (rlRough < rlRoughMin)

    Re < 2,000: rFrict = 64/Re,
    2,000 < Re < 100,000: rFrict = 0.3164*Re^(-0.25),
    Re > 100,000: rFrict = 0.0032+0.221*Re^(-0.237)

    Coarse pipes: (rlRough > rlRoughMin)

    Re < 2,000: rFrict = 64/Re = rFrict,Lam
    2,000 < Re < 3,000: rFrict,Tr = rFrict,Lam+(rFrict, Turb-rFrict,Lam)*(0.001*Re-2)
    3,000 < Re < 20,000: rFrict,0 = 0.3164*Re^(-0.25),
    rLam,0 = sqrt(rFrict,0)
    rLam,n = 1/(1.14-0.868589*ln(rlRough+9.3/(Re*rLam,n-1)))
    rFrict = rLam,n*rLam,n = rFrict, Turb
    Re > 20,000: rLam = 1/(1.14+0.868589*ln(1/rlRough))
    rFrict = rLam*rLam
    Tümünü Göster
    ···
  9. 334.
    0
    Correlations for heat transfer and pressure drop

    Nomenclature:

    D - Hydraulic diameter
    L - Flow length
    vel - Fluid velocity
    Dens - Density
    CP - Specific heat capacity
    DV - Dynamic viscosity
    KV - Kinematic viscosity = DV/Dens
    TC - Thermal conductivity
    Beta - Thermal expansion coefficient
    T,Surf - Surface temperature
    T,Amb - Ambient temperature
    dT = T,Surf - T,Amb
    Grav - Gravity acceleration
    Re - Reynolds number = vel*D/KV
    Gr - Grashof number = Grav*Beta*abs(dT)*D^3/KV^2
    Pr - Prandtl number = KV*CP/TC
    Ra - Rayleigh number = Gr*Pr
    Nu - Nusselt number = HTC*D/TC
    HTC - Heat transfer coefficient
    rlRough - Relative coarseness
    rFrict - Friction coefficient for fluid flow pressure drop
    Lam - Laminar
    Tr - Transient
    Turb - Turbulent

    General forced convection heat transfer:

    Re > 10000: HTC = HTCTurb = 0.027*(TC/D)*Re^0.8*Pr^(1/3)
    Re < 2300: HTC = HTCLam = 1.86*(TC/D)*Re*Pr*D/L)^(1/3)
    2300 < Re < 10000: HTC = HTCTurb*(1-(1-1.86*(L/D)^(-1/3)*(2300/Re)^(3/2))

    Laminar forced convection (Kreith & Black):

    Nu = 0.664*sqrt(Re)*Pr^(1/3);

    Turbulent forced convection (Kreith & Black):

    Nu = 0.036*(Re^0.8-23200)*Pr^(1/3);

    Forced convection heat transfer for external cross flow over single pipe (Churchill & Bernstein, 1977):

    Nu = 0.3 + 0.62*Re^(1/2)*Pr^(1/3)/(1+(0.4/Pr)^(2/3))^0.25*(1+(Re/282000)^(5/8))^(4/5)

    Turbulent forced convection heat transfer inside smooth pipes (Sieder & Tate, 1936):

    Nu = 0.027*Re^0.8*Pr^(1/3)*(DV/DV,wall)^0.14, Re > 10,000, 0.5 < Pr < 1E6

    Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):

    Nu = 0.023*Re^0.8*Pr^0.4, dT > 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60

    Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):

    Nu = 0.023*Re^0.8*Pr^0.3, dT < 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60

    General vertical plate free convection (Churchill & Chu, 1975):

    Nu = [0.825 + 0.387*Ra^(1/6)/[1 + (0.492/Pr)^(9/16)]^(8/27)]^2, 0.1 < Ra < 1E12

    Vertical plate laminar free convection (Kreith & Black):

    Nu = 0.59*Ra^(1/4)

    Vertical plate turbulent free convection (Kreith & Black):

    Nu = 0.10*Ra^(1/3)

    Vertical, short pipe external free convection heat transfer (LeFevre & Ede, 1956):

    Nu = 4/3*[7*Ra*Pr/[5*(20 + 21*Pr)]]^(1/4) + 4*(272 + 315*Pr)*L/[35*(64 + 63*Pr)*D]

    Vertical long pipe internal free convection heat transfer (A. Bejan, 1984):

    Nu = Ra/128, L/D > Ra

    Horizontal plate stable free convection (Incropera & DeWitt, 1990):

    Nu = 0.27*Ra^(1/4), 1E5 < Ra < 1E10

    Horizontal plate unstable laminar free convection (Lloyd & Moran, 1974):

    Nu = 0.54*Ra^(1/4), 1E4 < Ra < 1E7

    Horizontal plate unstable turbulent free convection (Lloyd & Moran, 1974):

    Nu = 0.15*Ra^(1/3), 1E7 < Ra < 1E9

    Horizontal pipe external free convection heat transfer (Churchill & Chu, 1975):

    Nu = [0.6 + 0.387*Ra^(1/6)/[1 + (0.559/Pr)^(9/16)]^(8/27)]^2, 1E-5 < Ra < 1E12

    Correlations for pressure drop:
    rlRoughMin interpolated in the following table with respect to the Reynolds number Re:

    Re: 0 20,000 20,000 100,000 1,000,000 10,000,000 100,000,000
    rlRoughMin: 1 1 0.067 0.014 0.0017 0.00019 0.000025

    Smooth pipes: (rlRough < rlRoughMin)

    Re < 2,000: rFrict = 64/Re,
    2,000 < Re < 100,000: rFrict = 0.3164*Re^(-0.25),
    Re > 100,000: rFrict = 0.0032+0.221*Re^(-0.237)

    Coarse pipes: (rlRough > rlRoughMin)

    Re < 2,000: rFrict = 64/Re = rFrict,Lam
    2,000 < Re < 3,000: rFrict,Tr = rFrict,Lam+(rFrict, Turb-rFrict,Lam)*(0.001*Re-2)
    3,000 < Re < 20,000: rFrict,0 = 0.3164*Re^(-0.25),
    rLam,0 = sqrt(rFrict,0)
    rLam,n = 1/(1.14-0.868589*ln(rlRough+9.3/(Re*rLam,n-1)))
    rFrict = rLam,n*rLam,n = rFrict, Turb
    Re > 20,000: rLam = 1/(1.14+0.868589*ln(1/rlRough))
    rFrict = rLam*rLam
    Tümünü Göster
    ···
  10. 335.
    0
    Correlations for heat transfer and pressure drop

    Nomenclature:

    D - Hydraulic diameter
    L - Flow length
    vel - Fluid velocity
    Dens - Density
    CP - Specific heat capacity
    DV - Dynamic viscosity
    KV - Kinematic viscosity = DV/Dens
    TC - Thermal conductivity
    Beta - Thermal expansion coefficient
    T,Surf - Surface temperature
    T,Amb - Ambient temperature
    dT = T,Surf - T,Amb
    Grav - Gravity acceleration
    Re - Reynolds number = vel*D/KV
    Gr - Grashof number = Grav*Beta*abs(dT)*D^3/KV^2
    Pr - Prandtl number = KV*CP/TC
    Ra - Rayleigh number = Gr*Pr
    Nu - Nusselt number = HTC*D/TC
    HTC - Heat transfer coefficient
    rlRough - Relative coarseness
    rFrict - Friction coefficient for fluid flow pressure drop
    Lam - Laminar
    Tr - Transient
    Turb - Turbulent

    General forced convection heat transfer:

    Re > 10000: HTC = HTCTurb = 0.027*(TC/D)*Re^0.8*Pr^(1/3)
    Re < 2300: HTC = HTCLam = 1.86*(TC/D)*Re*Pr*D/L)^(1/3)
    2300 < Re < 10000: HTC = HTCTurb*(1-(1-1.86*(L/D)^(-1/3)*(2300/Re)^(3/2))

    Laminar forced convection (Kreith & Black):

    Nu = 0.664*sqrt(Re)*Pr^(1/3);

    Turbulent forced convection (Kreith & Black):

    Nu = 0.036*(Re^0.8-23200)*Pr^(1/3);

    Forced convection heat transfer for external cross flow over single pipe (Churchill & Bernstein, 1977):

    Nu = 0.3 + 0.62*Re^(1/2)*Pr^(1/3)/(1+(0.4/Pr)^(2/3))^0.25*(1+(Re/282000)^(5/8))^(4/5)

    Turbulent forced convection heat transfer inside smooth pipes (Sieder & Tate, 1936):

    Nu = 0.027*Re^0.8*Pr^(1/3)*(DV/DV,wall)^0.14, Re > 10,000, 0.5 < Pr < 1E6

    Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):

    Nu = 0.023*Re^0.8*Pr^0.4, dT > 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60

    Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):

    Nu = 0.023*Re^0.8*Pr^0.3, dT < 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60

    General vertical plate free convection (Churchill & Chu, 1975):

    Nu = [0.825 + 0.387*Ra^(1/6)/[1 + (0.492/Pr)^(9/16)]^(8/27)]^2, 0.1 < Ra < 1E12

    Vertical plate laminar free convection (Kreith & Black):

    Nu = 0.59*Ra^(1/4)

    Vertical plate turbulent free convection (Kreith & Black):

    Nu = 0.10*Ra^(1/3)

    Vertical, short pipe external free convection heat transfer (LeFevre & Ede, 1956):

    Nu = 4/3*[7*Ra*Pr/[5*(20 + 21*Pr)]]^(1/4) + 4*(272 + 315*Pr)*L/[35*(64 + 63*Pr)*D]

    Vertical long pipe internal free convection heat transfer (A. Bejan, 1984):

    Nu = Ra/128, L/D > Ra

    Horizontal plate stable free convection (Incropera & DeWitt, 1990):

    Nu = 0.27*Ra^(1/4), 1E5 < Ra < 1E10

    Horizontal plate unstable laminar free convection (Lloyd & Moran, 1974):

    Nu = 0.54*Ra^(1/4), 1E4 < Ra < 1E7

    Horizontal plate unstable turbulent free convection (Lloyd & Moran, 1974):

    Nu = 0.15*Ra^(1/3), 1E7 < Ra < 1E9

    Horizontal pipe external free convection heat transfer (Churchill & Chu, 1975):

    Nu = [0.6 + 0.387*Ra^(1/6)/[1 + (0.559/Pr)^(9/16)]^(8/27)]^2, 1E-5 < Ra < 1E12

    Correlations for pressure drop:
    rlRoughMin interpolated in the following table with respect to the Reynolds number Re:

    Re: 0 20,000 20,000 100,000 1,000,000 10,000,000 100,000,000
    rlRoughMin: 1 1 0.067 0.014 0.0017 0.00019 0.000025

    Smooth pipes: (rlRough < rlRoughMin)

    Re < 2,000: rFrict = 64/Re,
    2,000 < Re < 100,000: rFrict = 0.3164*Re^(-0.25),
    Re > 100,000: rFrict = 0.0032+0.221*Re^(-0.237)

    Coarse pipes: (rlRough > rlRoughMin)

    Re < 2,000: rFrict = 64/Re = rFrict,Lam
    2,000 < Re < 3,000: rFrict,Tr = rFrict,Lam+(rFrict, Turb-rFrict,Lam)*(0.001*Re-2)
    3,000 < Re < 20,000: rFrict,0 = 0.3164*Re^(-0.25),
    rLam,0 = sqrt(rFrict,0)
    rLam,n = 1/(1.14-0.868589*ln(rlRough+9.3/(Re*rLam,n-1)))
    rFrict = rLam,n*rLam,n = rFrict, Turb
    Re > 20,000: rLam = 1/(1.14+0.868589*ln(1/rlRough))
    rFrict = rLam*rLam
    Tümünü Göster
    ···
  11. 336.
    0
    gece gelirim belki
    ···
  12. 337.
    0
    Correlations for heat transfer and pressure drop

    Nomenclature:

    D - Hydraulic diameter
    L - Flow length
    vel - Fluid velocity
    Dens - Density
    CP - Specific heat capacity
    DV - Dynamic viscosity
    KV - Kinematic viscosity = DV/Dens
    TC - Thermal conductivity
    Beta - Thermal expansion coefficient
    T,Surf - Surface temperature
    T,Amb - Ambient temperature
    dT = T,Surf - T,Amb
    Grav - Gravity acceleration
    Re - Reynolds number = vel*D/KV
    Gr - Grashof number = Grav*Beta*abs(dT)*D^3/KV^2
    Pr - Prandtl number = KV*CP/TC
    Ra - Rayleigh number = Gr*Pr
    Nu - Nusselt number = HTC*D/TC
    HTC - Heat transfer coefficient
    rlRough - Relative coarseness
    rFrict - Friction coefficient for fluid flow pressure drop
    Lam - Laminar
    Tr - Transient
    Turb - Turbulent

    General forced convection heat transfer:

    Re > 10000: HTC = HTCTurb = 0.027*(TC/D)*Re^0.8*Pr^(1/3)
    Re < 2300: HTC = HTCLam = 1.86*(TC/D)*Re*Pr*D/L)^(1/3)
    2300 < Re < 10000: HTC = HTCTurb*(1-(1-1.86*(L/D)^(-1/3)*(2300/Re)^(3/2))

    Laminar forced convection (Kreith & Black):

    Nu = 0.664*sqrt(Re)*Pr^(1/3);

    Turbulent forced convection (Kreith & Black):

    Nu = 0.036*(Re^0.8-23200)*Pr^(1/3);

    Forced convection heat transfer for external cross flow over single pipe (Churchill & Bernstein, 1977):

    Nu = 0.3 + 0.62*Re^(1/2)*Pr^(1/3)/(1+(0.4/Pr)^(2/3))^0.25*(1+(Re/282000)^(5/8))^(4/5)

    Turbulent forced convection heat transfer inside smooth pipes (Sieder & Tate, 1936):

    Nu = 0.027*Re^0.8*Pr^(1/3)*(DV/DV,wall)^0.14, Re > 10,000, 0.5 < Pr < 1E6

    Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):

    Nu = 0.023*Re^0.8*Pr^0.4, dT > 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60

    Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):

    Nu = 0.023*Re^0.8*Pr^0.3, dT < 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60

    General vertical plate free convection (Churchill & Chu, 1975):

    Nu = [0.825 + 0.387*Ra^(1/6)/[1 + (0.492/Pr)^(9/16)]^(8/27)]^2, 0.1 < Ra < 1E12

    Vertical plate laminar free convection (Kreith & Black):

    Nu = 0.59*Ra^(1/4)

    Vertical plate turbulent free convection (Kreith & Black):

    Nu = 0.10*Ra^(1/3)

    Vertical, short pipe external free convection heat transfer (LeFevre & Ede, 1956):

    Nu = 4/3*[7*Ra*Pr/[5*(20 + 21*Pr)]]^(1/4) + 4*(272 + 315*Pr)*L/[35*(64 + 63*Pr)*D]

    Vertical long pipe internal free convection heat transfer (A. Bejan, 1984):

    Nu = Ra/128, L/D > Ra

    Horizontal plate stable free convection (Incropera & DeWitt, 1990):

    Nu = 0.27*Ra^(1/4), 1E5 < Ra < 1E10

    Horizontal plate unstable laminar free convection (Lloyd & Moran, 1974):

    Nu = 0.54*Ra^(1/4), 1E4 < Ra < 1E7

    Horizontal plate unstable turbulent free convection (Lloyd & Moran, 1974):

    Nu = 0.15*Ra^(1/3), 1E7 < Ra < 1E9

    Horizontal pipe external free convection heat transfer (Churchill & Chu, 1975):

    Nu = [0.6 + 0.387*Ra^(1/6)/[1 + (0.559/Pr)^(9/16)]^(8/27)]^2, 1E-5 < Ra < 1E12

    Correlations for pressure drop:
    rlRoughMin interpolated in the following table with respect to the Reynolds number Re:

    Re: 0 20,000 20,000 100,000 1,000,000 10,000,000 100,000,000
    rlRoughMin: 1 1 0.067 0.014 0.0017 0.00019 0.000025

    Smooth pipes: (rlRough < rlRoughMin)

    Re < 2,000: rFrict = 64/Re,
    2,000 < Re < 100,000: rFrict = 0.3164*Re^(-0.25),
    Re > 100,000: rFrict = 0.0032+0.221*Re^(-0.237)

    Coarse pipes: (rlRough > rlRoughMin)

    Re < 2,000: rFrict = 64/Re = rFrict,Lam
    2,000 < Re < 3,000: rFrict,Tr = rFrict,Lam+(rFrict, Turb-rFrict,Lam)*(0.001*Re-2)
    3,000 < Re < 20,000: rFrict,0 = 0.3164*Re^(-0.25),
    rLam,0 = sqrt(rFrict,0)
    rLam,n = 1/(1.14-0.868589*ln(rlRough+9.3/(Re*rLam,n-1)))
    rFrict = rLam,n*rLam,n = rFrict, Turb
    Re > 20,000: rLam = 1/(1.14+0.868589*ln(1/rlRough))
    rFrict = rLam*rLam
    Tümünü Göster
    ···
  13. 338.
    0
    ama söz veremem
    ···
  14. 339.
    0
    Correlations for heat transfer and pressure drop

    Nomenclature:

    D - Hydraulic diameter
    L - Flow length
    vel - Fluid velocity
    Dens - Density
    CP - Specific heat capacity
    DV - Dynamic viscosity
    KV - Kinematic viscosity = DV/Dens
    TC - Thermal conductivity
    Beta - Thermal expansion coefficient
    T,Surf - Surface temperature
    T,Amb - Ambient temperature
    dT = T,Surf - T,Amb
    Grav - Gravity acceleration
    Re - Reynolds number = vel*D/KV
    Gr - Grashof number = Grav*Beta*abs(dT)*D^3/KV^2
    Pr - Prandtl number = KV*CP/TC
    Ra - Rayleigh number = Gr*Pr
    Nu - Nusselt number = HTC*D/TC
    HTC - Heat transfer coefficient
    rlRough - Relative coarseness
    rFrict - Friction coefficient for fluid flow pressure drop
    Lam - Laminar
    Tr - Transient
    Turb - Turbulent

    General forced convection heat transfer:

    Re > 10000: HTC = HTCTurb = 0.027*(TC/D)*Re^0.8*Pr^(1/3)
    Re < 2300: HTC = HTCLam = 1.86*(TC/D)*Re*Pr*D/L)^(1/3)
    2300 < Re < 10000: HTC = HTCTurb*(1-(1-1.86*(L/D)^(-1/3)*(2300/Re)^(3/2))

    Laminar forced convection (Kreith & Black):

    Nu = 0.664*sqrt(Re)*Pr^(1/3);

    Turbulent forced convection (Kreith & Black):

    Nu = 0.036*(Re^0.8-23200)*Pr^(1/3);

    Forced convection heat transfer for external cross flow over single pipe (Churchill & Bernstein, 1977):

    Nu = 0.3 + 0.62*Re^(1/2)*Pr^(1/3)/(1+(0.4/Pr)^(2/3))^0.25*(1+(Re/282000)^(5/8))^(4/5)

    Turbulent forced convection heat transfer inside smooth pipes (Sieder & Tate, 1936):

    Nu = 0.027*Re^0.8*Pr^(1/3)*(DV/DV,wall)^0.14, Re > 10,000, 0.5 < Pr < 1E6

    Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):

    Nu = 0.023*Re^0.8*Pr^0.4, dT > 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60

    Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):

    Nu = 0.023*Re^0.8*Pr^0.3, dT < 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60

    General vertical plate free convection (Churchill & Chu, 1975):

    Nu = [0.825 + 0.387*Ra^(1/6)/[1 + (0.492/Pr)^(9/16)]^(8/27)]^2, 0.1 < Ra < 1E12

    Vertical plate laminar free convection (Kreith & Black):

    Nu = 0.59*Ra^(1/4)

    Vertical plate turbulent free convection (Kreith & Black):

    Nu = 0.10*Ra^(1/3)

    Vertical, short pipe external free convection heat transfer (LeFevre & Ede, 1956):

    Nu = 4/3*[7*Ra*Pr/[5*(20 + 21*Pr)]]^(1/4) + 4*(272 + 315*Pr)*L/[35*(64 + 63*Pr)*D]

    Vertical long pipe internal free convection heat transfer (A. Bejan, 1984):

    Nu = Ra/128, L/D > Ra

    Horizontal plate stable free convection (Incropera & DeWitt, 1990):

    Nu = 0.27*Ra^(1/4), 1E5 < Ra < 1E10

    Horizontal plate unstable laminar free convection (Lloyd & Moran, 1974):

    Nu = 0.54*Ra^(1/4), 1E4 < Ra < 1E7

    Horizontal plate unstable turbulent free convection (Lloyd & Moran, 1974):

    Nu = 0.15*Ra^(1/3), 1E7 < Ra < 1E9

    Horizontal pipe external free convection heat transfer (Churchill & Chu, 1975):

    Nu = [0.6 + 0.387*Ra^(1/6)/[1 + (0.559/Pr)^(9/16)]^(8/27)]^2, 1E-5 < Ra < 1E12

    Correlations for pressure drop:
    rlRoughMin interpolated in the following table with respect to the Reynolds number Re:

    Re: 0 20,000 20,000 100,000 1,000,000 10,000,000 100,000,000
    rlRoughMin: 1 1 0.067 0.014 0.0017 0.00019 0.000025

    Smooth pipes: (rlRough < rlRoughMin)

    Re < 2,000: rFrict = 64/Re,
    2,000 < Re < 100,000: rFrict = 0.3164*Re^(-0.25),
    Re > 100,000: rFrict = 0.0032+0.221*Re^(-0.237)

    Coarse pipes: (rlRough > rlRoughMin)

    Re < 2,000: rFrict = 64/Re = rFrict,Lam
    2,000 < Re < 3,000: rFrict,Tr = rFrict,Lam+(rFrict, Turb-rFrict,Lam)*(0.001*Re-2)
    3,000 < Re < 20,000: rFrict,0 = 0.3164*Re^(-0.25),
    rLam,0 = sqrt(rFrict,0)
    rLam,n = 1/(1.14-0.868589*ln(rlRough+9.3/(Re*rLam,n-1)))
    rFrict = rLam,n*rLam,n = rFrict, Turb
    Re > 20,000: rLam = 1/(1.14+0.868589*ln(1/rlRough))
    rFrict = rLam*rLam
    Tümünü Göster
    ···
  15. 340.
    0
    Correlations for heat transfer and pressure drop

    Nomenclature:

    D - Hydraulic diameter
    L - Flow length
    vel - Fluid velocity
    Dens - Density
    CP - Specific heat capacity
    DV - Dynamic viscosity
    KV - Kinematic viscosity = DV/Dens
    TC - Thermal conductivity
    Beta - Thermal expansion coefficient
    T,Surf - Surface temperature
    T,Amb - Ambient temperature
    dT = T,Surf - T,Amb
    Grav - Gravity acceleration
    Re - Reynolds number = vel*D/KV
    Gr - Grashof number = Grav*Beta*abs(dT)*D^3/KV^2
    Pr - Prandtl number = KV*CP/TC
    Ra - Rayleigh number = Gr*Pr
    Nu - Nusselt number = HTC*D/TC
    HTC - Heat transfer coefficient
    rlRough - Relative coarseness
    rFrict - Friction coefficient for fluid flow pressure drop
    Lam - Laminar
    Tr - Transient
    Turb - Turbulent

    General forced convection heat transfer:

    Re > 10000: HTC = HTCTurb = 0.027*(TC/D)*Re^0.8*Pr^(1/3)
    Re < 2300: HTC = HTCLam = 1.86*(TC/D)*Re*Pr*D/L)^(1/3)
    2300 < Re < 10000: HTC = HTCTurb*(1-(1-1.86*(L/D)^(-1/3)*(2300/Re)^(3/2))

    Laminar forced convection (Kreith & Black):

    Nu = 0.664*sqrt(Re)*Pr^(1/3);

    Turbulent forced convection (Kreith & Black):

    Nu = 0.036*(Re^0.8-23200)*Pr^(1/3);

    Forced convection heat transfer for external cross flow over single pipe (Churchill & Bernstein, 1977):

    Nu = 0.3 + 0.62*Re^(1/2)*Pr^(1/3)/(1+(0.4/Pr)^(2/3))^0.25*(1+(Re/282000)^(5/8))^(4/5)

    Turbulent forced convection heat transfer inside smooth pipes (Sieder & Tate, 1936):

    Nu = 0.027*Re^0.8*Pr^(1/3)*(DV/DV,wall)^0.14, Re > 10,000, 0.5 < Pr < 1E6

    Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):

    Nu = 0.023*Re^0.8*Pr^0.4, dT > 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60

    Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):

    Nu = 0.023*Re^0.8*Pr^0.3, dT < 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60

    General vertical plate free convection (Churchill & Chu, 1975):

    Nu = [0.825 + 0.387*Ra^(1/6)/[1 + (0.492/Pr)^(9/16)]^(8/27)]^2, 0.1 < Ra < 1E12

    Vertical plate laminar free convection (Kreith & Black):

    Nu = 0.59*Ra^(1/4)

    Vertical plate turbulent free convection (Kreith & Black):

    Nu = 0.10*Ra^(1/3)

    Vertical, short pipe external free convection heat transfer (LeFevre & Ede, 1956):

    Nu = 4/3*[7*Ra*Pr/[5*(20 + 21*Pr)]]^(1/4) + 4*(272 + 315*Pr)*L/[35*(64 + 63*Pr)*D]

    Vertical long pipe internal free convection heat transfer (A. Bejan, 1984):

    Nu = Ra/128, L/D > Ra

    Horizontal plate stable free convection (Incropera & DeWitt, 1990):

    Nu = 0.27*Ra^(1/4), 1E5 < Ra < 1E10

    Horizontal plate unstable laminar free convection (Lloyd & Moran, 1974):

    Nu = 0.54*Ra^(1/4), 1E4 < Ra < 1E7

    Horizontal plate unstable turbulent free convection (Lloyd & Moran, 1974):

    Nu = 0.15*Ra^(1/3), 1E7 < Ra < 1E9

    Horizontal pipe external free convection heat transfer (Churchill & Chu, 1975):

    Nu = [0.6 + 0.387*Ra^(1/6)/[1 + (0.559/Pr)^(9/16)]^(8/27)]^2, 1E-5 < Ra < 1E12

    Correlations for pressure drop:
    rlRoughMin interpolated in the following table with respect to the Reynolds number Re:

    Re: 0 20,000 20,000 100,000 1,000,000 10,000,000 100,000,000
    rlRoughMin: 1 1 0.067 0.014 0.0017 0.00019 0.000025

    Smooth pipes: (rlRough < rlRoughMin)

    Re < 2,000: rFrict = 64/Re,
    2,000 < Re < 100,000: rFrict = 0.3164*Re^(-0.25),
    Re > 100,000: rFrict = 0.0032+0.221*Re^(-0.237)

    Coarse pipes: (rlRough > rlRoughMin)

    Re < 2,000: rFrict = 64/Re = rFrict,Lam
    2,000 < Re < 3,000: rFrict,Tr = rFrict,Lam+(rFrict, Turb-rFrict,Lam)*(0.001*Re-2)
    3,000 < Re < 20,000: rFrict,0 = 0.3164*Re^(-0.25),
    rLam,0 = sqrt(rFrict,0)
    rLam,n = 1/(1.14-0.868589*ln(rlRough+9.3/(Re*rLam,n-1)))
    rFrict = rLam,n*rLam,n = rFrict, Turb
    Re > 20,000: rLam = 1/(1.14+0.868589*ln(1/rlRough))
    rFrict = rLam*rLam
    Tümünü Göster
    ···
  16. 341.
    0
    Correlations for heat transfer and pressure drop

    Nomenclature:

    D - Hydraulic diameter
    L - Flow length
    vel - Fluid velocity
    Dens - Density
    CP - Specific heat capacity
    DV - Dynamic viscosity
    KV - Kinematic viscosity = DV/Dens
    TC - Thermal conductivity
    Beta - Thermal expansion coefficient
    T,Surf - Surface temperature
    T,Amb - Ambient temperature
    dT = T,Surf - T,Amb
    Grav - Gravity acceleration
    Re - Reynolds number = vel*D/KV
    Gr - Grashof number = Grav*Beta*abs(dT)*D^3/KV^2
    Pr - Prandtl number = KV*CP/TC
    Ra - Rayleigh number = Gr*Pr
    Nu - Nusselt number = HTC*D/TC
    HTC - Heat transfer coefficient
    rlRough - Relative coarseness
    rFrict - Friction coefficient for fluid flow pressure drop
    Lam - Laminar
    Tr - Transient
    Turb - Turbulent

    General forced convection heat transfer:

    Re > 10000: HTC = HTCTurb = 0.027*(TC/D)*Re^0.8*Pr^(1/3)
    Re < 2300: HTC = HTCLam = 1.86*(TC/D)*Re*Pr*D/L)^(1/3)
    2300 < Re < 10000: HTC = HTCTurb*(1-(1-1.86*(L/D)^(-1/3)*(2300/Re)^(3/2))

    Laminar forced convection (Kreith & Black):

    Nu = 0.664*sqrt(Re)*Pr^(1/3);

    Turbulent forced convection (Kreith & Black):

    Nu = 0.036*(Re^0.8-23200)*Pr^(1/3);

    Forced convection heat transfer for external cross flow over single pipe (Churchill & Bernstein, 1977):

    Nu = 0.3 + 0.62*Re^(1/2)*Pr^(1/3)/(1+(0.4/Pr)^(2/3))^0.25*(1+(Re/282000)^(5/8))^(4/5)

    Turbulent forced convection heat transfer inside smooth pipes (Sieder & Tate, 1936):

    Nu = 0.027*Re^0.8*Pr^(1/3)*(DV/DV,wall)^0.14, Re > 10,000, 0.5 < Pr < 1E6

    Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):

    Nu = 0.023*Re^0.8*Pr^0.4, dT > 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60

    Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):

    Nu = 0.023*Re^0.8*Pr^0.3, dT < 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60

    General vertical plate free convection (Churchill & Chu, 1975):

    Nu = [0.825 + 0.387*Ra^(1/6)/[1 + (0.492/Pr)^(9/16)]^(8/27)]^2, 0.1 < Ra < 1E12

    Vertical plate laminar free convection (Kreith & Black):

    Nu = 0.59*Ra^(1/4)

    Vertical plate turbulent free convection (Kreith & Black):

    Nu = 0.10*Ra^(1/3)

    Vertical, short pipe external free convection heat transfer (LeFevre & Ede, 1956):

    Nu = 4/3*[7*Ra*Pr/[5*(20 + 21*Pr)]]^(1/4) + 4*(272 + 315*Pr)*L/[35*(64 + 63*Pr)*D]

    Vertical long pipe internal free convection heat transfer (A. Bejan, 1984):

    Nu = Ra/128, L/D > Ra

    Horizontal plate stable free convection (Incropera & DeWitt, 1990):

    Nu = 0.27*Ra^(1/4), 1E5 < Ra < 1E10

    Horizontal plate unstable laminar free convection (Lloyd & Moran, 1974):

    Nu = 0.54*Ra^(1/4), 1E4 < Ra < 1E7

    Horizontal plate unstable turbulent free convection (Lloyd & Moran, 1974):

    Nu = 0.15*Ra^(1/3), 1E7 < Ra < 1E9

    Horizontal pipe external free convection heat transfer (Churchill & Chu, 1975):

    Nu = [0.6 + 0.387*Ra^(1/6)/[1 + (0.559/Pr)^(9/16)]^(8/27)]^2, 1E-5 < Ra < 1E12

    Correlations for pressure drop:
    rlRoughMin interpolated in the following table with respect to the Reynolds number Re:

    Re: 0 20,000 20,000 100,000 1,000,000 10,000,000 100,000,000
    rlRoughMin: 1 1 0.067 0.014 0.0017 0.00019 0.000025

    Smooth pipes: (rlRough < rlRoughMin)

    Re < 2,000: rFrict = 64/Re,
    2,000 < Re < 100,000: rFrict = 0.3164*Re^(-0.25),
    Re > 100,000: rFrict = 0.0032+0.221*Re^(-0.237)

    Coarse pipes: (rlRough > rlRoughMin)

    Re < 2,000: rFrict = 64/Re = rFrict,Lam
    2,000 < Re < 3,000: rFrict,Tr = rFrict,Lam+(rFrict, Turb-rFrict,Lam)*(0.001*Re-2)
    3,000 < Re < 20,000: rFrict,0 = 0.3164*Re^(-0.25),
    rLam,0 = sqrt(rFrict,0)
    rLam,n = 1/(1.14-0.868589*ln(rlRough+9.3/(Re*rLam,n-1)))
    rFrict = rLam,n*rLam,n = rFrict, Turb
    Re > 20,000: rLam = 1/(1.14+0.868589*ln(1/rlRough))
    rFrict = rLam*rLam
    Tümünü Göster
    ···
  17. 342.
    0
    Correlations for heat transfer and pressure drop

    Nomenclature:

    D - Hydraulic diameter
    L - Flow length
    vel - Fluid velocity
    Dens - Density
    CP - Specific heat capacity
    DV - Dynamic viscosity
    KV - Kinematic viscosity = DV/Dens
    TC - Thermal conductivity
    Beta - Thermal expansion coefficient
    T,Surf - Surface temperature
    T,Amb - Ambient temperature
    dT = T,Surf - T,Amb
    Grav - Gravity acceleration
    Re - Reynolds number = vel*D/KV
    Gr - Grashof number = Grav*Beta*abs(dT)*D^3/KV^2
    Pr - Prandtl number = KV*CP/TC
    Ra - Rayleigh number = Gr*Pr
    Nu - Nusselt number = HTC*D/TC
    HTC - Heat transfer coefficient
    rlRough - Relative coarseness
    rFrict - Friction coefficient for fluid flow pressure drop
    Lam - Laminar
    Tr - Transient
    Turb - Turbulent

    General forced convection heat transfer:

    Re > 10000: HTC = HTCTurb = 0.027*(TC/D)*Re^0.8*Pr^(1/3)
    Re < 2300: HTC = HTCLam = 1.86*(TC/D)*Re*Pr*D/L)^(1/3)
    2300 < Re < 10000: HTC = HTCTurb*(1-(1-1.86*(L/D)^(-1/3)*(2300/Re)^(3/2))

    Laminar forced convection (Kreith & Black):

    Nu = 0.664*sqrt(Re)*Pr^(1/3);

    Turbulent forced convection (Kreith & Black):

    Nu = 0.036*(Re^0.8-23200)*Pr^(1/3);

    Forced convection heat transfer for external cross flow over single pipe (Churchill & Bernstein, 1977):

    Nu = 0.3 + 0.62*Re^(1/2)*Pr^(1/3)/(1+(0.4/Pr)^(2/3))^0.25*(1+(Re/282000)^(5/8))^(4/5)

    Turbulent forced convection heat transfer inside smooth pipes (Sieder & Tate, 1936):

    Nu = 0.027*Re^0.8*Pr^(1/3)*(DV/DV,wall)^0.14, Re > 10,000, 0.5 < Pr < 1E6

    Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):

    Nu = 0.023*Re^0.8*Pr^0.4, dT > 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60

    Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):

    Nu = 0.023*Re^0.8*Pr^0.3, dT < 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60

    General vertical plate free convection (Churchill & Chu, 1975):

    Nu = [0.825 + 0.387*Ra^(1/6)/[1 + (0.492/Pr)^(9/16)]^(8/27)]^2, 0.1 < Ra < 1E12

    Vertical plate laminar free convection (Kreith & Black):

    Nu = 0.59*Ra^(1/4)

    Vertical plate turbulent free convection (Kreith & Black):

    Nu = 0.10*Ra^(1/3)

    Vertical, short pipe external free convection heat transfer (LeFevre & Ede, 1956):

    Nu = 4/3*[7*Ra*Pr/[5*(20 + 21*Pr)]]^(1/4) + 4*(272 + 315*Pr)*L/[35*(64 + 63*Pr)*D]

    Vertical long pipe internal free convection heat transfer (A. Bejan, 1984):

    Nu = Ra/128, L/D > Ra

    Horizontal plate stable free convection (Incropera & DeWitt, 1990):

    Nu = 0.27*Ra^(1/4), 1E5 < Ra < 1E10

    Horizontal plate unstable laminar free convection (Lloyd & Moran, 1974):

    Nu = 0.54*Ra^(1/4), 1E4 < Ra < 1E7

    Horizontal plate unstable turbulent free convection (Lloyd & Moran, 1974):

    Nu = 0.15*Ra^(1/3), 1E7 < Ra < 1E9

    Horizontal pipe external free convection heat transfer (Churchill & Chu, 1975):

    Nu = [0.6 + 0.387*Ra^(1/6)/[1 + (0.559/Pr)^(9/16)]^(8/27)]^2, 1E-5 < Ra < 1E12

    Correlations for pressure drop:
    rlRoughMin interpolated in the following table with respect to the Reynolds number Re:

    Re: 0 20,000 20,000 100,000 1,000,000 10,000,000 100,000,000
    rlRoughMin: 1 1 0.067 0.014 0.0017 0.00019 0.000025

    Smooth pipes: (rlRough < rlRoughMin)

    Re < 2,000: rFrict = 64/Re,
    2,000 < Re < 100,000: rFrict = 0.3164*Re^(-0.25),
    Re > 100,000: rFrict = 0.0032+0.221*Re^(-0.237)

    Coarse pipes: (rlRough > rlRoughMin)

    Re < 2,000: rFrict = 64/Re = rFrict,Lam
    2,000 < Re < 3,000: rFrict,Tr = rFrict,Lam+(rFrict, Turb-rFrict,Lam)*(0.001*Re-2)
    3,000 < Re < 20,000: rFrict,0 = 0.3164*Re^(-0.25),
    rLam,0 = sqrt(rFrict,0)
    rLam,n = 1/(1.14-0.868589*ln(rlRough+9.3/(Re*rLam,n-1)))
    rFrict = rLam,n*rLam,n = rFrict, Turb
    Re > 20,000: rLam = 1/(1.14+0.868589*ln(1/rlRough))
    rFrict = rLam*rLam
    Tümünü Göster
    ···
  18. 343.
    0
    Correlations for heat transfer and pressure drop

    Nomenclature:

    D - Hydraulic diameter
    L - Flow length
    vel - Fluid velocity
    Dens - Density
    CP - Specific heat capacity
    DV - Dynamic viscosity
    KV - Kinematic viscosity = DV/Dens
    TC - Thermal conductivity
    Beta - Thermal expansion coefficient
    T,Surf - Surface temperature
    T,Amb - Ambient temperature
    dT = T,Surf - T,Amb
    Grav - Gravity acceleration
    Re - Reynolds number = vel*D/KV
    Gr - Grashof number = Grav*Beta*abs(dT)*D^3/KV^2
    Pr - Prandtl number = KV*CP/TC
    Ra - Rayleigh number = Gr*Pr
    Nu - Nusselt number = HTC*D/TC
    HTC - Heat transfer coefficient
    rlRough - Relative coarseness
    rFrict - Friction coefficient for fluid flow pressure drop
    Lam - Laminar
    Tr - Transient
    Turb - Turbulent

    General forced convection heat transfer:

    Re > 10000: HTC = HTCTurb = 0.027*(TC/D)*Re^0.8*Pr^(1/3)
    Re < 2300: HTC = HTCLam = 1.86*(TC/D)*Re*Pr*D/L)^(1/3)
    2300 < Re < 10000: HTC = HTCTurb*(1-(1-1.86*(L/D)^(-1/3)*(2300/Re)^(3/2))

    Laminar forced convection (Kreith & Black):

    Nu = 0.664*sqrt(Re)*Pr^(1/3);

    Turbulent forced convection (Kreith & Black):

    Nu = 0.036*(Re^0.8-23200)*Pr^(1/3);

    Forced convection heat transfer for external cross flow over single pipe (Churchill & Bernstein, 1977):

    Nu = 0.3 + 0.62*Re^(1/2)*Pr^(1/3)/(1+(0.4/Pr)^(2/3))^0.25*(1+(Re/282000)^(5/8))^(4/5)

    Turbulent forced convection heat transfer inside smooth pipes (Sieder & Tate, 1936):

    Nu = 0.027*Re^0.8*Pr^(1/3)*(DV/DV,wall)^0.14, Re > 10,000, 0.5 < Pr < 1E6

    Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):

    Nu = 0.023*Re^0.8*Pr^0.4, dT > 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60

    Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):

    Nu = 0.023*Re^0.8*Pr^0.3, dT < 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60

    General vertical plate free convection (Churchill & Chu, 1975):

    Nu = [0.825 + 0.387*Ra^(1/6)/[1 + (0.492/Pr)^(9/16)]^(8/27)]^2, 0.1 < Ra < 1E12

    Vertical plate laminar free convection (Kreith & Black):

    Nu = 0.59*Ra^(1/4)

    Vertical plate turbulent free convection (Kreith & Black):

    Nu = 0.10*Ra^(1/3)

    Vertical, short pipe external free convection heat transfer (LeFevre & Ede, 1956):

    Nu = 4/3*[7*Ra*Pr/[5*(20 + 21*Pr)]]^(1/4) + 4*(272 + 315*Pr)*L/[35*(64 + 63*Pr)*D]

    Vertical long pipe internal free convection heat transfer (A. Bejan, 1984):

    Nu = Ra/128, L/D > Ra

    Horizontal plate stable free convection (Incropera & DeWitt, 1990):

    Nu = 0.27*Ra^(1/4), 1E5 < Ra < 1E10

    Horizontal plate unstable laminar free convection (Lloyd & Moran, 1974):

    Nu = 0.54*Ra^(1/4), 1E4 < Ra < 1E7

    Horizontal plate unstable turbulent free convection (Lloyd & Moran, 1974):

    Nu = 0.15*Ra^(1/3), 1E7 < Ra < 1E9

    Horizontal pipe external free convection heat transfer (Churchill & Chu, 1975):

    Nu = [0.6 + 0.387*Ra^(1/6)/[1 + (0.559/Pr)^(9/16)]^(8/27)]^2, 1E-5 < Ra < 1E12

    Correlations for pressure drop:
    rlRoughMin interpolated in the following table with respect to the Reynolds number Re:

    Re: 0 20,000 20,000 100,000 1,000,000 10,000,000 100,000,000
    rlRoughMin: 1 1 0.067 0.014 0.0017 0.00019 0.000025

    Smooth pipes: (rlRough < rlRoughMin)

    Re < 2,000: rFrict = 64/Re,
    2,000 < Re < 100,000: rFrict = 0.3164*Re^(-0.25),
    Re > 100,000: rFrict = 0.0032+0.221*Re^(-0.237)

    Coarse pipes: (rlRough > rlRoughMin)

    Re < 2,000: rFrict = 64/Re = rFrict,Lam
    2,000 < Re < 3,000: rFrict,Tr = rFrict,Lam+(rFrict, Turb-rFrict,Lam)*(0.001*Re-2)
    3,000 < Re < 20,000: rFrict,0 = 0.3164*Re^(-0.25),
    rLam,0 = sqrt(rFrict,0)
    rLam,n = 1/(1.14-0.868589*ln(rlRough+9.3/(Re*rLam,n-1)))
    rFrict = rLam,n*rLam,n = rFrict, Turb
    Re > 20,000: rLam = 1/(1.14+0.868589*ln(1/rlRough))
    rFrict = rLam*rLam
    Tümünü Göster
    ···
  19. 344.
    0
    @1 giblemeyin beyler belki gider
    ···
  20. 345.
    0
    http://inciswf.com/109229giblemiyoruz.swf
    ···