1. 101.
    0
    e up o zaman
    ···
  2. 102.
    0
    termo la bu
    ···
  3. 103.
    0
    Heat capacity (usually denoted by a capital C, often with subscripts), or thermal capacity, is the measurable physical quantity that characterizes the amount of heat required to change a substance's temperature by a given amount. In the International System of Units (SI), heat capacity is expressed in units of joule(s) (J) per kelvin (K).

    Derived quantities that specify heat capacity as an intensive property, independent of the size of a sample, are the molar heat capacity, which is the heat capacity per mole of a pure substance, and the specific heat capacity, often simply called specific heat, which is the heat capacity per unit mass of a material.

    Temperature reflects the average kinetic energy of particles in matter. Heat is the transfer of thermal energy; it flows from regions of high temperature to regions of low temperature. Thermal energy is stored as kinetic energy in the random modes of translation in monatomic substances, and translations and rotations of polyatomic molecules in gases. Additionally, some thermal energy may be stored as the potential energy associated with higher-energy modes of vibration, whenever they occur in interatomic bonds in any substance. Translation, rotation, and a combination of the two types of energy in vibration (kinetic and potential) represent the degrees of freedom of motion which classically contribute to the heat capacity of a thermodynamic system. On a microscopic scale, each particle in a system absorbs heat energy among the few degrees of freedom available to it, and this absorption contributes to a specific heat capacity which classically approaches a maximum per mole of particles that is set by the Dulong-Petit law. The limit is achieved by many kinds of solids at room temperature.

    For quantum mechanical reasons, at any given temperature, some of these degrees of freedom may be unavailable, or only partially available, to store thermal energy. In such cases, the specific heat capacity will be a fraction of the maximum. As the temperature approaches absolute zero, the specific heat capacity of a system also approaches zero, due to loss of available degrees of freedom. Quantum theory can be used to quantitatively predict specific heat capacities in simple systems.

    üniversiteli olmayan google'a yazmayı bilmiyor mu sandın bin.
    ···
  4. 104.
    0
    o değil beyler derdimi anlatamadım herkes okulda gördüğü bişey yazsın. böylece ünililer meydana çıkmış olur
    ···
  5. 105.
    0
    @7 BAŞBAKANIN BEN YOUTUBE A GiRiYORUM SiZ GiRMiYORMUSUNUZ YORUMU
    ···
  6. 106.
    0
    hadi lan ünililer nerdesiniz
    ···
  7. 107.
    0
    hadilan up lan up
    ···
  8. 108.
    0
    herkes liseli mi amk
    ···
  9. 109.
    0
    panpa leyla ile mecnun dizi ekibiyle söyleşi vardı amk ona gittim çok iyiydi not: ccc gazi ccc
    ···
  10. 110.
    0
    yalnız var ya tam entry nicksin sen panpa
    ···
  11. 111.
    0
    heat deyince aklıma heat shock proteins geliyor panpa (hsp60-70)
    ···
  12. 112.
    0
    @29 o zaman ya vizeler kötü senin galiba yada hoca muallak galiba panpa
    ···
  13. 113.
    0
    barometrik benlik saygısı deyim bari amk sdjkfsdjkl
    ···
  14. 114.
    0
    @46 gerçek hayatta hiç uygulanamayan bi kural diyodu bizim arkadaş * zaten hergün okula söve söve gidiyodu
    ···
  15. 115.
    0
    @45 yok panpa @36 nın yazıdıgı cümleye göre tahmin ettim de kimya müh. oldugunu
    eyv bölüm iyi geleceği parlak haklısın.
    ···
  16. 116.
    0
    Viskozite
    ···
  17. 117.
    0
    @50 bu dönem dıbına koyacam o viskozitenin panpa. buradan böylece muallak akışa da selam etmiş olduk.
    ···
  18. 118.
    0
    19.yy başat gücü ingiltere panpalar aklınızda bulunsun
    ···
  19. 119.
    0
    @52 başat ne panpa. uyduruk bi kelime değil mi bu?
    ···
  20. 120.
    0
    energy cannot be destroyed or cannot be created. only changes form
    ···