+1
siz kaçın beyler ben bu liselileri oyalarım...
Logaritma (Yunanca: λόγἀριθμός), 17. yüzyılın başında hesapları hızlandırmak için yapılan bir buluştur. 300 yıldan daha uzun bir zaman, temel bir hesap metodu olmuştur. 19. yüzyılda masa hesap makinalarının doğuşu ve yirminci yüzyılda elektronik hesap makinalarının ortaya çıkışı, logaritmaya olan ihtiyacı azaltmıştır. Logaritmalı hesap makinalari da mevcuttur. Ancak logaritmik fonksiyonların teorik ve uygulamalı matematikte özel bir yeri vardır.Çünkü bu makinalar süper iletken teknolojisi ile üretilen oldukça pahalı cihazlardır.
Logaritma, birbirinden habersiz çalışan iki kişi tarafından keşfedilmiştir. Bunlar; 1614'te iskoçyalı George Napyer ve 1620'de isviçreli Joost Bürgin'dir.
Logaritma üzerinde önemli çalışmaları olan bir Türk bilgini de Gelenbevi ismail Efendi'dir. Kendisi büyük bir matematikçi olup, mantıkla da uğraşmıştır. 1730-1790 yıllarında yaşayan bu büyük alimin Logaritma Risalesi isimli çok açık, anlaşılır yazılmış bir eseri mevcuttur. Bu risaledeki metinler, bilim insanlarına hesap yapabilen bir cihaz tasarlama fikrini vermiştir. ismail Efendinin bilim dünyasına bu açıdan bakıldığında büyük katkıları olduğu açıkça farkedilmektedir.
Logaritmayı açıklamak için 2·2·2= 8 ifadesine bakalım. Aradaki nokta işaretleri çarpımı simgeler.Bu 2³ = 8 olarak kısaca yazılabilir. 3.3.3 = 27 ifadesi ise bir önceki ifadeye oldukça benzer.Bu örnekte 3, 8'in 2 tabanına göre logaritması denir. Buradan çıkan sonuç log28=3 'dur. Logaritma Risalesinde mezvu bahiste geçen anlatıma göre, başka bir örnek, 2·2·2·2 = 16 ve 24 = 16 yazılırsa, burada 4, 16'nın 2 tabanına göre logaritmasıdır. Yani log216=4 'tür. Genel olarak bx= N ifadesinde N'nin b tabanına göre logaritması, x'tir. Her ne kadar her pozitif sayı taban olarak kullanılırsa da genel olarak logaritma 10 ve e (yaklaşık, 2,7134884828) tabanına göre hesaplanır.
Eğer taban olarak yaklaşık 2,718281828 olan e sayısı alınırsa, bu logaritma doğal logaritma veya keşfeden George Napyer'e atfen Napyer logaritması olarak da isimlendirilir. logeN yerine ln N ifadesi kullanılır. Mesela, ln 2 yaklaşık olarak 0,6237'dir. Doğal logaritma genel olarak, ilmi kanunların ifadesinde sık sık ortaya çıkar. Detaylı bilgi ve araştırma için Logaritma Risalesi kaynak ismi olarak verilebilir.
Adi ve doğal logaritmalar birbirleri ile alakalı olup, az hatalı bir çevirme yapılmak isteniyorsa, doğal logaritma, adi logaritmaya 0,5362 sayısı ile çarparak çevrilebilir.
Adi ve doğal logaritmaların dışında herhangi pozitif tabana göre de logaritma kullanılır. Yürürlükteki bilim standartlarında konu yalnızca pozitif değerler için çözülebilir öngörülmüştür. Negatif sayıların herhangi bir tabana göre logaritmasının olmayacağı savı ise tartışma konusudur. Bazı bilim insanları bu konuda uzay-zaman geriliminin mekan üzerindeki baskısından hareketle, matematiksel olarak negatif bir denkliğin olması gerektiği üzerine vurgu yaparlar. Kuantum mekaniği açısından durum incelendiğinde logaritmik fonksiyonların negatif sayı tabanlı değer alabileceği görülmektedir.
Tümünü Göster