1. 1.
    0
    If there is a black hole around, one member of a particle anti particle pair may fall into the hole, leaving the other member without a partner, with which to annihilate. The forsaken particle may fall into the hole as well, but it may also escape to a large distance from the hole, where it will become a real particle, that can be measured by a particle detector. To someone a long way from the black hole, it will appear to have been emitted by the hole.
    This explanation of how black holes ain't so black, makes it clear that the emission will depend on the size of the black hole, and the rate at which it is rotating. But because black holes have no hair, in Wheeler's phrase, the radiation will be otherwise independent of what went into the hole. It doesn't matter whether you throw television sets, diamond rings, or your worst enemies, into a black hole. What comes back out will be the same.

    So what has all this to do with determinism, which is what this lecture is supposed to be about. What it shows is that there are many initial states, containing television sets, diamond rings, and even people, that evolve to the same final state, at least outside the black hole. But in Laplace's picture of determinism, there was a one to one correspondence between initial states, and final states. If you knew the state of the universe at some time in the past, you could predict it in the future. Similarly, if you knew it in the future, you could calculate what it must have been in the past. The advent of quantum theory in the 1920s reduced the amount one could predict by half, but it still left a one to one correspondence between the states of the universe at different times. If one knew the wave function at one time, one could calculate it at any other time.

    With black holes, however, the situation is rather different. One will end up with the same state outside the hole, whatever one threw in, provided it has the same mass. Thus there is not a one to one correspondence between the initial state, and the final state outside the black hole. There will be a one to one correspondence between the initial state, and the final state both outside, and inside, the black hole. But the important point is that the emission of particles, and radiation by the black hole, will cause the hole to lose mass, and get smaller. Eventually, it seems the black hole will get down to zero mass, and will disappear altogether. What then will happen to all the objects that fell into the hole, and all the people that either jumped in, or were pushed? They can't come out again, because there isn't enough mass or energy left in the black hole, to send them out again. They may pass into another universe, but that is not something that will make any difference, to those of us prudent enough not to jump into a black hole. Even the information, about what fell into the hole, could not come out again when the hole finally disappears. Information can not be carried free, as those of you with phone bills will know. Information requires energy to carry it, and there won't be enough energy left when the black hole disappears.
    Tümünü Göster
    ···
   tümünü göster